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ABSTRACT 

The bump at the end of the bridge and the high cost of deep embedded drilled shafts have 

long been recognized by many bridge owners. This research aims to mediate the bump at the 

end of the bridge and to validate the use of post grouting to increase drilled shaft capacity. 

Performance monitoring and full scale test programs were used to evaluate these technical 

issues. 

The bump at the end of the bridge is typically due to settlement of the approach soils and 

cracking of the approach pavements. The settlement and cracking in integral abutment 

bridges are typically dealt with by connecting the approach slab to the integral abutment 

bridge. Two integral abutment bridges with integrally connected precast approach slabs were 

evaluated using long-term monitoring systems to study their structural performance and 

determine the range of forces that should be considered when designing such approach slabs. 

This study has identified design and construction considerations for integrally connected 

precast approach slabs. The approach slab study revealed the source and magnitude of forces 

to be considered in the design and construction of approach slabs integrally connected to 

integral abutment bridges. Consideration of these forces in the design and construction of 

such approach slabs could potentially lead to reduced maintenance costs associated with the 

bump at the end of the bridge. 

The required deep embedment length of drilled shafts is due to the inability to fully 

mobilize the end bearing resistance of the shaft before reaching service displacement criteria. 

Post grouting of drilled shafts can be used to effectively increase the end bearing capacity 

within service displacement limits, often times allowing the drilled shaft to be shortened 

without sacrificing capacity. Through a load test program and long-term performance 

monitoring of production shafts, the increase in capacity and performance of post grouted 

drilled shafts were investigated. This study has identified design and construction 

considerations for post grouted drilled shafts. The post grouted drilled shaft study verified the 

use of post grouting as a technique for increasing the end bearing resistance of drilled shafts 

and also identified design and construction considerations for post grouted drilled shafts. 

Increasing the end bearing resistance of drilled shafts through the use of post grouting can 
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effectively allow the shafts to be shortened without losing capacity or exceeding service 

displacement criteria; potentially leading to reduced costs for bridge projects. 
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CHAPTER 1.  

INTRODUCTION 

This chapter presents the industry and technical problems addressed in these projects, the 

research goals and objectives, and a discussion of the significance of this research. The final 

section of this chapter describes the organization of this thesis.  

INDUSTRY PROBLEMS 

Following is a discussion of two problems which are experienced by many bridge owners 

and other users of deep foundations. The impact of these concerns is also discussed. 

Industry Concerns 

Integral Abutment Bridges – The Bump at the End of the Bridge 

The bridge industry concern investigated in this research is the bump at the end of the 

bridge which is common to approach slab pavement at Integral Abutment (I-A) bridges. 

According to a study by Bigelow et al. (2008), this is a problem common to many bridge 

owners. Connecting approach slab pavements to I-A bridges is a technique used by many 

bridge owners to move the bump from the approach slab/abutment interface to the approach 

slab/mainline pavement interface. This research investigates the forces that are present in 

such a configuration which may contribute to bump forming.  

Post Grouting of Drilled Shafts 

In addition to investigating I-A bridge approach slabs, this research investigates the 

increase in the capacity of drilled shafts by the use of post grouting. Often times conditions 

such as vibration limits, lateral strength requirements, and scour require the use of drilled 

shafts rather than driven piles as an alternative for deep foundations. Although drilled shafts 

are typically considered to be a costly solution, post grouting is a technique used around the 

world to increase the cost effectiveness of drilled shafts.  

Impact on industry  

This research investigates techniques that can be used by bridge owners and other users 

of deep foundations to reduce costs. Although the bump at the end of the bridge is not a 

significant safety issue, it does present a costly maintenance issue and negative public 
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perception. The use of post grouting can potentially increase the capacity of drilled shafts, 

thereby enabling cost savings by the use of shorter drilled shafts.  

TECHNICAL PROBLEM 

The technical problems associated with the industry concerns previously discussed are 

discussed below.  

Integral Abutment Bridges – The Bump at the End of the Bridge 

According to Lenke (2006), the bump at the end of the bridge is typically attributed to 

settlement (and differential settlement) of backfill soil under the approach slab, deterioration 

of the corbel or paving notch, and joint design and maintenance. A common solution to these 

problems associated with I-A bridges is to attach the approach slab to the bridge abutment, 

effectively moving the expansion joint away from the approach slab/abutment interface and 

closer to the approach slab/mainline pavement interface where soil settlement is less of a 

concern and maintenance is presumably easier. This study investigates the forces that 

develop from this configuration and the effective design of this type of system. 

Post Grouting of Drilled Shafts 

Drilled shafts tipped in granular soil rely primarily on skin friction due to the large 

displacement generally required to fully mobilize the end bearing capacity. Typically, end 

bearing is not mobilized before service load displacement criteria are exceeded. Post grouting 

of drilled shafts is a mechanism used to pre-compact or compress the soil directly below the 

tip of a drilled shaft as a means of increasing the mobilized end bearing before displacement 

criteria are exceeded, this effectively increasing the ultimate capacity of a drilled shaft. The 

research presented herein aims to fill the gap of long-term performance monitoring of post 

grouted drilled shafts with the intent to better understand the effects of post grouting on test 

shafts loaded to failure as well as production shafts under service loads.  

GOAL OF THE RESEARCH 

The following are goals of the research presented herein: 

1. Mediate the bump at the end of the bridge. 

2. Validate the use of post grouting to increase drilled shaft capacity. 
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OBJECTIVES 

Through performance monitoring and test programs, the technical problems associated 

with the bump at the end of the bridge and the general inability to rely on the end bearing 

capacity of drilled shafts tipped in granular soil were evaluated. Two integral abutment 

bridges with integrally connected approach slabs were evaluated with the use of long-term 

monitoring systems to study their structural performance and determine the range of forces 

that should be considered when designing such approach slabs. Through a load test program 

and long-term performance monitoring of production shafts, the increase in capacity and 

performance of post grouted drilled shafts were investigated. 

SIGNIFICANCE OF THE RESEARCH 

This research has the ability to reduce maintenance costs for bridge owners and reduce 

material costs for construction of deep foundations. Understanding the forces that develop in 

approach slabs tied to integral abutments can lead to approach slab designs that reduce or 

even eliminate the bump at the end of the bridge. For deep foundations, validating the 

increase in the capacity of post grouted drilled shafts over that of ungrouted drilled shafts and 

understanding the long-term performance of post grouted drilled shafts can lead to the use of 

shorter drilled shafts. Increasing the capacity of drilled shafts using post grouting can lead to 

the shortening of the drilled shafts which will reduce the cost of labor materials such as 

concrete and steel. 

THESIS ORGANIZATION 

This thesis includes three papers to be submitted for publication in scholarly journals. 

The chapters listed here follow this introduction chapter: 

 Background: A review of relevant literature and previous research. 

 Performance of Precast Approach Slabs Integral with Integral Abutment Bridges: 

An evaluation of the forces in approach slabs tied to I-A bridges. 

 Forensic Investigation of a Load-Tested Post Grouted Drilled Shaft: An 

evaluation of a post grouted drilled shaft test program. 

 Performance of Post Grouted Drilled Shafts: An evaluation of the influence of 

construction loads and service loads on post grouted drilled shafts. 
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 Conclusions: Research findings and benefits derived from those findings. 
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CHAPTER 2. BACKGROUND/LITERATURE REVEIW 

This chapter presents two kinds of background for the project; a review of relevant 

literature and a summary of present practices. The purpose of this chapter is to provide an 

overview showing how this research relates to current theory and practice. 

RELEVANT RESEARCH AND LITERATURE 

Major Contributions to Integral Abutment Bridges 

Traditionally, bridge structures have used components such as expansion joints, roller 

supports, and expansion bearings to accommodate movements related to thermal expansion 

and contraction strains, creep, and shrinkage. According to Kunin (1999), I-A bridges are 

becoming an increasingly popular alternative among bridge owners. I-A bridges are designed 

without expansion joints and designed for all supports to accommodate thermal, and other 

movements (Mistry 2005). There are many benefits derived from the use of I-A bridges 

(Kunin 1999) including: 

 Lower cost (both initial construction costs and long-term maintenance costs) 

 Decreased deterioration from de-icing chemicals and snowplows 

 Decreased impact loads 

 Improved ride quality 

 Simplified construction, and  

 Improved structural resistance to seismic events. 

Although there are many benefits of I-A bridges, approach slab pavements at I-A bridges are 

susceptible to settlement and cracking, which according to Horvath (2000) is manifested as 

the “bump at the end of the bridge.” The bump at the end of the bridge does not present a 

significant safety problem but it is an expensive maintenance issue. Lenke (2006) attributes 

the formation of the bump to the following factors: 

 settlement of backfill under the approach slab, 

 deterioration of the corbel or paving notch,  

 joint design, and  

 lack of joint maintenance. 
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It is believed that the joint design of I-A bridges may worsen the bump, and a common 

solution is to attach the approach slab to the bridge abutment. Attaching the approach slab to 

the bridge abutment moves the expansion joint from the approach slab/abutment interface to 

a position closer to the approach slab/mainline pavement interface. Soil settlement is less of a 

concern near the approach slab/mainline pavement interface and maintenance is presumed to 

be easier at the location as well. 

Present Practice for Integral Abutment Bridges 

Based on a review of literature including surveys of bridge owners, the present practice in 

most of the United States, areas in Canada, and parts of Europe, is to connect the approach 

slab to integral abutment bridges. According to a study by Bigelow et al. (2008), use of this 

configuration moved the bump from the end of the bridge to the pavement end of the 

approach slab. However, cracking at the bridge end of the approach slab was reported with 

the use of a horizontal connection, rather than a diagonal connection. 

Major Contributions to Post Grouted Drilled Shafts 

This section contains a brief background on drilled shafts, an overview on drilled shaft 

design capacity, a background on post grouted drilled shafts and the components of post 

grouting, and an overview of drilled shaft design capacity. 

Drilled Shafts Background 

Drilled shafts have evolved from a specialty foundation for situations where vibrations 

could not be tolerated or where shallow foundations were insufficient, to more widely used 

foundations due to the requirements for increased lateral strength of bridge foundations 

(Mullins et al. 2006). Foundations for water crossing bridges are also impacted by scour, 

which requires an increased depth for pile foundations whereas drilled shaft length is 

minimally affected by scour. 

To insure a structurally sound shaft, the stability of the excavation must be maintained 

prior to and during placement of the concrete. The method of construction as well as the 

properties of the concrete can affect the capacity of the shaft. The various methods of 

construction adopted to address site-specific conditions include the following: 

 Dry vs. wet construction, 
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 Cased vs. uncased shaft construction 

 Tremie placed or free-fall placed concrete. 

Inherently stable soil formations such as stiff clay or rock without ground water are 

needed to perform dry construction. Wet construction should be used when groundwater is 

present and likely to enter the excavation. Wet construction involves the use of a slurry or 

drilling mud in the excavation to maintain pressure on the walls o the excavation. Mineral, 

synthetic, and natural slurry types can be used for wet construction. The length of time the 

slurry is left in the excavation as well as the slurry type can affect the capacity of the shaft. 

A  relatively thin-walled steel pipe casing, can also be used to maintain stability of the 

excavation walls. Casing is intended to be used when slurries are ineffective, or when the top 

elevation of the shaft must be higher than the surface of free standing bodies of water. 

Casings can be driven, vibrated, jetted or oscillated into position prior to excavation. The 

capacity of the shaft can also be affected by the installation and removal of temporary 

casings.  

Free-fall concrete placement can be used with dry construction, although there may be 

restrictions by regulatory agencies against its use due to separation aggregates leading to 

poor quality shafts. Wet construction requires the use of tremie placed concrete which 

eliminates the possibility of segregation of the concrete and/or mixing with the in situ slurry.  

Whether the allowable strength design (ASD) or load and resistance factor design 

(LFRD) design approach is used, the concept of usable capacity as a function of ultimate 

capacity must be addressed. To this end, a permissible displacement limit must be 

established. The usable capacity is then determined for the specified displacement limit. 

Design of drilled shafts therefore requires the displacement criteria be superimposed onto 

load carrying capability, even when using the LRFD design method. 

The load carrying capacity of drilled shafts is derived from a combination of side shear 

and end bearing. The permissible displacement criteria generally allow the side shear to be 

assumed 100% usable but the end bearing may not be 100% usable. Therefore, the concept of 

mobilized end bearing (the capacity developed at a given displacement) is utilized.  
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The usable capacity or effective ultimate capacity is used rather than the ultimate 

capacity derived from either ASD or LRFD design methods. The effective ultimate capacity 

is a displacement-restricted usable capacity.  

Drilled Shaft Design Capacity 

Drilled shaft capacity is derived from both side shear resistance and end bearing 

resistance. Various design methods are available for determining the capacity of drilled 

shafts including the use of SPT data, CPT data, rock core data, and load test data. Because 

the research project presented in this document used SPT data, the methods of determining 

drilled shaft capacity based on SPT data are presented here in.  

The ultimate side shear capacity, Qs, is the summation of the unit side shear developed 

over the length of the shaft using the following equation: 

 Qs =          
 
   , (2.1) 

where qsi is the estimated unit side shear for the i
th

 soil layer, Li is the thickness of the i
th

 soil 

layer, and Di is the diameter of the shaft in the i
th

 soil layer. For calculation of qsi, Mullins et 

al. (2004) recommends the use of O’Neill and Hassan’s (1994) Modified Beta Method. 

Estimates of the unit side shear resistance developed between the perimeter of a drilled shaft 

and adjacent sandy soils, are presented in Table 1. 

The unit side shear resistance developed between the perimeter of a drilled shaft and clay 

soils is a function of the adhesion factor α and undrained shear strength Su; 

 qs =    , (2.2) 

The ultimate end bearing capacity, Qp, is represented by: 

 Qp = 
 

 
    , (2.3) 

where qp is the estimated unit end bearing resistance and D is the shaft diameter at the base of 

the shaft. Estimates of the unit end bearing resistance can be found in Table 2 for shafts of 

diameter less than 4.17 ft. If the shaft diameter, D, is greater than 4.17 ft, the end bearing 

resistance should be reduced to 

 qpr =          , (2.4) 

The unit end bearing developed at the base of a drilled shaft tipped in clay soils and 

having a diameter less than 75 inches is represented by (AASHTO, 1998) 
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Table 1. Drilled Shaft Side Shear Design Methods for Sandy Soils (adapted from 

AASHTO, 1998) 

Source Side Shear Resistance, qs (tsf) 

Touma and Reese (1974) qs = Kσ’votanϕ < 2.5 tsf 

  

 where 

 K = 0.7 for Db ≤ 25 ft 

 K = 0.6 for 25 ft < Db ≤ 40 ft 

 K = 0.5 for Db > 40 ft 

Meyerhof (1976) qs = N/100 

Quiros and Reese (1977) qs = 0.026N < 2.0 tsf 

Reese and Wright (1977) qs = N/34, for N ≤ 53 

 qs = (N – 53) / 450 + 1.6, for 53 < N ≤ 100 

 qs ≤ 1.7 

Reese and O’Neill (1988) qs = βσ’vo < 2.0 tsf, for 0.25 ≤ β ≤ 1.2 

Beta Method  

 where 

 β = 1.5 – 0.135z
0.5

, z in ft 

O’Neill and Hassan (1994) qs = βσ’vo < 2.0 tsf, for 0.25 ≤ β ≤ 1.2 

Modified Beta Method  

 where 

 β = N/15(1.5 – 0.135z
0.5

) for N ≤ 15 

 β = 1.5 – 0.135z
0.5

 for N > 15 

Db is the drilled shaft base diameter. 

N is the uncorrected SPT blow count 
 

  

 qp =             (2.5) 

where  

 Nc =  
         

 

 
                     

        
 

 
                    

  (2.6) 

and Z/D is the ratio of the drilled shaft depth to the drilled shaft diameter. AASHTO (1998) 

recommends a reduction factor as, shown below, be used for drilled shafts greater than 75 

inches in diameter;  

 qpr =     , (2.7) 

where  

 Fr =                      (2.8) 
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The parameters a and b in Equation 2.8 are functions of the depth to load ratio and the 

undrained shear strength, respectively;  

 a =              
 

 
       (2.9) 

 b =          
                  (2.10) 

Table 2. Drilled Shaft End Bearing Design Methods for Sandy Soils (adapted from 

AASHTO, 1998) 

Source End Bearing Resistance, qp (tsf) 

Touma and Reese (1974) Loose Sand, qp = 0.0 

 Medium Dense Sand, qp = 16/k 

 Very Dense Sand, qp = 40/k 

   

 where  

 k = 1 for Dp < 1.67 ft  

 k = 0.67Dp for Dp ≥ 1.67 ft  

 

Method applicable for shaft 

embedment in sand bearing 

layer Db > 10D 

 

Meyerhof (1976) qp = (2NcorrDb)/(15Dp)  

 qp < (4/3)Ncorr for sand  

 qp < Ncorr for non-plastic silts  

Reese and Wright (1977) qp = 2/3N for N ≤ 60  

 qp = 40 for N > 60  

Reese and O’Neill (1988) qp = 0.6N for N ≤ 75  

 qp = 45 for N > 75  

Db is the drilled shaft base diameter. 

Ncorr =         
  

  
    

  

 

Post Grouted Drilled Shaft Background 

Since the 1980’s, post grouting has been routinely used in many parts of the world 

(Mullins et al. 2001). Post grouting is a two step process consisting of (1) installing grout 

pipes during cage preparation, and (2) injecting high pressure grout beneath the tip of the 

shaft after the concrete in the shaft has cured. Historically, post grouting drilled shafts in 

cohesionless soils has usually increased the end bearing capacity.  

For sands, there is typically a direct correlation between volume of cement grout injected 

and the ultimate load increase. Loose to medium dense sands generally give the highest 
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increases in capacity. Both permeation grouting and compaction grouting are applicable to 

loose to medium dense sands and dense sand. However, dense sands may yield less 

significant improvements with permeation grouting relative to compaction grouting. 

Compaction grouting can be used with silty sands, although it is more effective in clean 

sands.  

In sites where the soil is likely to be stratified, lensed, or highly permeable, 

staged grouting may be effective in confining the grout to a smaller region around the shaft 

tip. With staged grouting, an initial volume of grout is allowed to set before subsequent 

stages are completed. Allowing the previous stage of grout to set and develop some strength 

before adding more grout will fill possible escape routes for the next stage of grouting. With 

staged grouting, the tip improvement is limited by the shaft side shear available for the 

grouting pressure to react against. According to Mullins et al. (2001), the sleeve-port 

grouting apparatus design works well for staged grouting, while the flat-jack design does not. 

Grouting Techniques 

Grouting techniques vary with the mechanism for dispensing grout beneath the shaft tip. 

Two basic systems are used for distribution of the grout: (1) simple compaction grouting 

(sleeve-port), and (2) mechanical grouting system (flat-jack). Mullins et al. (2001) discuss 

three forms of grout distribution; (1) Stem (Orifice), (2) Sleeve-Port (Tube-a-Manchette), and 

(3) Flat-Jack (Pre-Load Cells). 

Due to the simplicity of the stem form of post grouting, this form of grout distribution is 

only used as a remediation technique for substandard shafts with inadequate capacity. This 

grouting apparatus consists of a pressure conduit (such as a pipe or cored hole through an 

existing shaft). Such a conduit terminates at the desired grouting location.  

Sleeve-port systems consist of a simple network of u-shaped perforated pipes encased in 

rubber sleeves at the base of the shaft connected to grout tubes to the top of the shaft. The 

rubber membrane is intended to prevent blockage during shaft construction and act as a 

check-valve to prevent back flow of grout up the tubes following grouting. There are several 

variations to the sleeve-port. Another complication with the sleeve-port apparatus is that the 

grout pressure is unable to break the encapsulation in cases where the excavation depth is 

lower than the sleeve-port elevation. Mullins et al. (2001) recommends the use of a floating 
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sleeve-port or the use of flexible grout hoses for instances where the cage length and 

excavation may not be consistent or where the top of steel set is critical.  

The flat-jack method uses one steel plate with a neoprene membrane beneath. An 

impermeable liner covers the plates to prevent concrete blockage of the injection ports during 

construction and to ensure the grout does not permeate into the surrounding soil. 

Grout Mixes 

The success of post-grouting drilled shaft tips is highly dependent upon the grout 

mixture. Grouting properties and procedures can vary widely including the following: grout 

mixers, grout pumps, access lines, grout mixing, grout physical properties, and grout 

constituents.  

The equipment and mechanisms used in grouting have many variations. Grout mixers are 

classified into three groups: high-quality, less efficient and lower quality. The classification 

of mixer to be used is a function of the grout pressure and the size of the access lines. A wide 

variety of grout pumps are available. Grout pumps vary in method (continuous pumping or 

cyclic pumping), maximum pressure, and the type of grout constituents used.  

The size of the access line should also be considered in determining the grouting 

procedures. Reduction in the size of the access lines can cause grout build up due to water 

segregation from the paste. This type of buildup can block the flow through the pump and 

should be avoided (Mullins et al. 2001). 

The requirements of the fresh and hardened properties of the grout will vary among 

projects. The fresh properties of a grout mix are the flowability, pumpability, viscosity, and 

the colloidal nature of the grout. Pumpability of a grout is a function of pump type, pressure 

to be achieved, access line dimensions, and time of pumping a single mix. The hardened 

properties of grout that need to be considered are the compressive strength, leaching or 

segregation, creep and bleeding (a quasi-hardened property). The required compressive 

strength of the grout should far exceed soil strength for post-grouting of drilled shafts. 

Grout Constituents 

Grout mixes are comprised of water, cement, aggregates, and admixtures. Tap water is 

generally used in grout mixes. According to Mullins et al. (2001) Type I/II Portland Cement 
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with admixtures is typically used in post grouting processes. In general, only fine aggregates 

are used in grout mixes. Fine aggregates are typically comprised of crushed or natural sands.  

Admixtures can affect many of the fresh and hardened properties as well as the set times 

and initial shrinkage. Admixtures have two general classifications: mineral and chemical 

admixtures. Mineral admixtures include fly-ash, blast furnace slag, and metakaolin. Mineral 

admixtures will improve the flow and pumpability, and lessen the bleed water by increasing 

the amount of fines in a grout mix. Although mineral admixtures are beneficial to the grout 

mix properties, these benefits may not outweigh the added costs involved.  

Chemical admixtures include water reducers, retarders, accelerators, air entrainers, de-air 

entrainers, latexes, finishing agents, shrinkage reduction agents, corrosion inhibitors and 

many other chemicals which can be used to alter the properties of a grout mix. Water 

reducers, retarders, and air entrainers are generally used with grout mixes that will be 

pumped. 

Post Grouted Drilled Shaft Design Capacity 

The empirical design method for post grouted drilled shafts in sands, developed by 

Mullins et al. (2006) is based on studies involving full-scale Statnamic load tests. In the 

empirical method, the unit end bearing capacity of a post grouted drilled shaft is related to 

the unit ungrouted end bearing capacity through the tip capacity multiplier (TCM); 

 qgrouted =         (2.11) 

where the empirical tip capacity multiplier (TCM) is given by  

 TCM =                   
  

        
 (2.12) 

In Equation 2.12, the grouting pressure index (GPI), is the ratio of the maximum grouting 

pressure (GPmax) to the ungrouted end bearing capacity (qp) at 5%D displacement and %D is 

the chosen allowable tip displacement expressed as a percentage of the shaft diameter.  

Present Practice for Post Grouted Drilled Shafts 

Based on a review of literature, the use of post grouted drilled shafts is typically 

accompanied by load test programs. Although the review of literature revealed the use of 

post grouted drilled shafts world-wide, little information was found on long-term 

performance monitoring of post grouted drilled shafts.  
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CONTEXT FOR THESE PROJECTS 

This section discusses the purpose of the projects presented in this thesis. Although many 

bridge owners are connecting their approach slabs to their I-A bridges, a rigorous review of 

the literature revealed that little has been done to determine the forces that develop in 

approach slabs tied to I-A bridges. The I-A bridge study presented herein attempts to bridge 

this knowledge gap. 

As discussed previously, post grouting of drilled shafts is being used around the world, 

though little work has been published on long-term performance monitoring of post grouted 

drilled shafts. Also, there has been little published on the investigation of failed attempts at 

post grouting of drilled shafts. The post grouted drilled shaft study presented herein extends 

the existing database of load test information available on improvement of drilled shaft 

capacity via post grouting, examines the inability to post grout a test shaft, and provides new 

data on the long-term performance of post grouted production drilled shafts. 
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CHAPTER 3. PERFORMANCE OF PRECAST APPROACH SLABS INTEGRAL 

WITH INTEGRAL ABUTMENT BRIDGES 

 

A paper to be submitted to the Journal of Bridge Engineering 

 

Anna Nadermann, Brent Phares, Lowell Greimann 

Abstract 

Approach slab pavement at integral abutment bridges is prone to settlement and cracking, 

as has been long recognized by many bridge owners. A common solution to these problems 

is to attach the approach slab to the bridge abutment. In this study, the behavior of such 

approach slabs was investigated by implementing health monitoring systems on approach 

slabs, interpreting the data obtained during 12-month monitoring periods, and conducting 

periodic visual inspections at two bridge sites. Based on the information obtained, the 

following general conclusions were made. (1) The connection between the approach slabs 

and the bridges appear to function well with no observed distress at these locations and no 

relative movements measured between the two components. (2) The measured strains in the 

approach slabs indicate that significant forces exist at the expansion joints between the 

approach slab and pavement, which should be taken into consideration when designing both 

the approach slab and the bridge. (3) Although measures were taken to reduce frictional 

forces on the slabs, notable friction was measured. 

Introduction 

The Iowa Department of Transportation (Iowa DOT) and other bridge owners have long 

recognized that approach slab pavements at integral abutment (I-A) bridges are prone to 

settlement and cracking, which is manifested as the “bump at the end of the bridge” (Horvath 

2000). The bump is not a significant safety problem; rather, it is an expensive maintenance 

issue. Further, public perception is negatively affected by the presence of the bump. The 

formation of the bump is typically attributed to settlement of backfill soil under the approach 

slab and deterioration of the corbel or paving notch (Lenke 2006). Lenke also lists joint 

design and maintenance as a contributing factor in the development of the bump. Although it 
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is recognized that I-A bridges have many highly desirable attributes, the joint design may be 

worsening the bump. A common solution to the observed problems is to attach the approach 

slab to the bridge abutment, which moves the expansion joint, typically found at the approach 

slab/abutment interface, to a location further from the bridge where soil settlement is less of a 

concern and maintenance is presumably easier.  

As part of the Iowa DOT’s quest to improve the long-term performance of their bridges, 

several projects were initiated to investigate a new detail for attaching approach slabs to 

integral abutment bridges. One of the goals of these projects was to understand the 

performance of the connection detail and the magnitude of the forces developed in the 

approach slab as it moved with expansion and contraction of the I-A bridge. This paper 

summarizes the results of parts of two larger studies. Specifically, the behavior of attached 

approach slabs at two bridge sites in Iowa will be discussed with a primary focus on the 

forces that develop in the slab.  

State-of-Practice 

The most obvious general benefit derived from using I-A bridges is cost, both initial 

construction costs and long-term maintenance costs. Kunin (1999) lists additional specific 

benefits of I-A bridges including reduced deterioration from de-icing chemicals and 

snowplows, decreased impact loads, improved ride quality, simplified construction, and 

improved structural resistance to seismic events.  

The bump that can develop at I-A bridges is typically due to differential settlement of the 

bridge abutment and approach pavement, i.e., soil structure interaction (Horvath 2000). 

Bigelow et al. (2008) attributes the differential settlement to one of the following: (1) 

insufficient compaction of soil or poor backfill properties, (2) void development due to 

erosion, or (3) displacement due to pavement growth. Generally, void development occurs 

within the first year after construction. Annual expansion and contraction of I-A bridges due 

to thermal variations generally causes further compaction of the fill material creating void 

space under the approach slab (Horvath 2000). Water naturally collects in these voids which 

can cause soil erosion, further increasing the size of the void.  

Approach slabs are intended, among other things, to minimize the effects of differential 

settlement and to provide a smooth transition to and from the mainline pavement and the 
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bridge. Connecting the approach slab to the bridge further improves the minimization of 

differential settlement. In general, the slab can be connected to the bridge in one of two ways:  

 Extending the deck reinforcing into the approach slab (horizontal – see Figure 1a) or 

 Using reinforcing steel to connect the slab to the corbel or abutment (diagonal – see 

Figure 1b). 

 

Figure 1. Typical connection of approach slab to bridge; (a) Deck steel extension 

connection and (b) Abutment steel connection 

Bigelow et al. (2008) conducted a survey of the DOTs of the north central states to assess 

various aspects of bridge ride-ability. Table 1 is a partial summary of the survey. In general, 

it was reported that an approach slab connected to the bridge moved the bump from the end 

of the bridge to the pavement end of the approach slab where it was felt that it could be more 

easily maintained. Generally, cracking at the bridge end of the approach slab was reported 

when a horizontal connection was used. Minnesota originally used a horizontal connection 

and experienced cracking; after changing to a diagonal connection, no cracks were reported. 
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Table 3. Summary of DOT Survey Responses 

State Connection Type Performance 

Illinois Horizontal Transverse cracking problem 

Kansas Horizontal Reasonably well 

Minnesota Diagonal No problems reported 

Missouri Horizontal No answer 

Nebraska Diagonal Management is pleased 

North Dakota Horizontal Very well 

South Dakota Horizontal Pretty Well 

 

Objective and Approach 

As mentioned previously, two projects were initiated by the Iowa DOT to evaluate the 

performance of integral abutment bridges with integrally connected approach slabs and to 

determine the range of forces that should be considered when designing such slabs. Bridges 

in O’Brien County, IA (2 twin side-by-side bridges) and Bremer County, IA with integrally 

connected approach slabs were instrumented with long-term monitoring systems to study 

their structural performance over several seasons. 

Bridge Descriptions 

O’Brien County Bridges 

Two new side-by-side bridges on the new Iowa Highway 60 bypass of Sheldon, IA in 

O’Brien County (O’Brien County Bridge) were the first bridges in Iowa to tie the approach 

slab to an I-A abutment bridge. One bridge utilized a cast-in-place approach slab system 

while the other utilized a precast approach slab system. The O’Brien County bridges are twin 

three-span-continuous prestressed concrete girder bridges, 303 ft x 40 ft, with a right-hand-

ahead 30 degree skew angle. The end spans are 90 ft - 9 in. and the interior span measures 

121 ft - 6 in. The bridges are inclined with a change in elevation from the North abutment to 

the South abutment of approximately 1 ft – 2-1/2 in. With the exception of the approach slab 

type (precast or cast-in-place) the two O’Brien County bridges were identical. For 

consistency in making comparisons with the Bremer County Bridge, only the precast 

approach slab is discussed herein. 

The precast approach consists of eight panels that are nominally 12 in. thick. Six panels 

are rectangular panels 20 ft long by 14 ft wide. The remaining two panels are trapezoidal 
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panels 14 ft wide with a 30 degree skew at the bridge end. The approach slab is connected to 

the bridge by a vertical anchor bar drilled and grouted into the cast-in-place paving notch. At 

the other end of the approach slab an IADOT standard EF expansion joint (a slip dowel-type 

joint) was used. A friction reducing polyethylene sheeting was used under the approach slab. 

Bremer County Bridge 

Two new bridges were constructed on US-63 over County Road C-50 (Fayette St.) in 

Denver, IA in Bremer County (Bremer County Bridge). The typical precast approach slab 

system used for the Bremer County Bridge is shown in Figure 2a. The northbound bridge is a 

three-span precast concrete girder bridge, 161 ft x 40 ft, with a right-hand-ahead 2°29’52” 

skew angle. The bridge is inclined with a change in elevation from the South abutment to the 

North abutment of approximately 9 ½ in.  

Unlike the O’Brien County Bridge, the Bremer County bridge approach slab uses both 

precast and cast-in-place shoulder sections (see Figure 2a). Each approach slab consists of 

eight precast prestressed panels that are nominally 12 in. thick, except at the abutment where 

the thickness was reduced to 9.5 in. to match the paving notches (see Figure 2b). The four 

panels at the pavement end of the approach are rectangular and doweled to the pavement (E 

joint). The four panels at the bridge end of the approach are trapezoidal with a skew to match 

the bridge. The approach slab is connected to the bridge by an angled dowel bar as depicted 

in Figure 2b. A friction reducing polyethylene sheeting was used under the approach slab. 

Instrumentation 

Both the O’Brien and Bremer County bridges were instrumented with long-term 

monitoring systems consisting of a data logger and vibrating wire sensors. Each bridge was 

monitored for approximately one year with data collected and stored once an hour. Although 

other sensors were used to monitor other areas of the bridges, the principal sensors of interest 

herein are strain gages embedded in the approach slab and crackmeters. At the O’Brien 

County Bridge sixteen strain gages were embedded in the approach slab. Two gages were 

placed in each of the eight panels and oriented and aligned such that they created four lines 

of four sensors measuring strains in the direction of the roadway. Additionally, 
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Figure 2. Precast approach slab; (a) Plan view and (b) Elevation view of precast 

approach slab [Bremer] 

crackmeters were installed at each panel-to-panel joint; at the approach-to-bridge interface 

and at the approach-to-pavement interface (a total of ten crackmeters). Due to construction 

restrictions, a modified instrumentation scheme was utilized at the Bremer County Bridge as 

shown in Figure 3 (24 strain gages in four lines and eight crack meters). Note that the same 

basic behaviors were measured (e.g., four lines of longitudinally oriented strain gages and 

joint openings) at each bridge. 

Results 

In the following section the results of the experimental investigation are summarized with 

specific attention paid to those results which pertain to the forces on the approach pavement. 
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Figure 3. Instrumentation layout in precast approach slab [Bremer] 

Note that at times reference is made to “hot”, “average”, and “cold” days. These days 

occurred on July 21, 2009, April 18, 2009, and January 5, 2010, respectively, and represent 

the general behavior during cold, temperate and hot periods at the Bremer County site. For 
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comparison and reference herein, similar “cold”, “average”, and “hot” dates were considered 

for the O’Brien County site. 

Load Strain 

The load-related strain (i.e. corrected for thermal strain effects) time histories for select 

Bremer County bridge sensors are shown in Figure 4; the load strain time history is similar 

for the O’Brien County Bridge and is not shown here in the interest of brevity. Note that 

“load strain” is the load-related strain due to loads resulting from restrained thermal 

expansion and contraction. The load strain does not include unrestrained strain resulting from 

temperature changes.  

 

Figure 4. Load strain in approach slab over time [Bremer] 

The difference in strains measured along the four lines of gages (A, B, C, and D) show that 

load strains vary transversely. This indicates that the slab restraint varied transversely – 

potentially due to the slight skew. In general, as the temperature decreases, the load strain 

within the slab increases (i.e. the load strain moves toward tension (positive) in winter 

months and toward compression in summer months). This consistent behavior (both in lateral 

and longitudinal position) indicates that forces are being developed in the slab as a result of 

joint behavior “lock-up” and/or bottom-of-slab frictional force development. As the approach 

slab cools it contracts away from the expansion Type EF joint and as the approach slab 
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warms it expands into the Type EF joint. A properly operating joint and frictionless resting 

surface would result in the development of no force in the approach slab. Quite to the 

contrary it can be observed (and will be further discussed in the following sections) that 

frictional forces and joint forces are being developed. 

The load strain at the O’Brien County Bridge was generally observed to be uniform both 

longitudinally and transversely. Figure 5 shows how the load strain at the Bremer County 

Bridge varies longitudinally on the cold and the hot days along the D line of gages (Figure 4).  

The load strain is relative to the “average” day (i.e. the load strain is shown as zero for the 

“average” day). The figure shows the locations of the EF joint and the abutment joint as well 

as the linear regression line on the cold day extrapolated to the abutment joint. The slope of 

the regression line is a direct measure of the frictional resistance being encountered by the 

slab. Although length limitations prohibit showing graphically, the data indicate that during 

different seasons the slope of the line changes from negative (as shown in Figure 5) to 

positive. This represents a change in the direction of the frictional force as will be discussed 

further. 

 

Figure 5. Load strain along D-line of approach slab [Bremer] 

Although not shown here in the interest of brevity, the linear regression lines, on the cold 

day, for gage lines A, B and D have slopes of differing magnitudes but in the same direction 

(i.e., the load strain is decreasing longitudinally toward the abutment) indicating that the 
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frictional resistance is not uniform across the width. Interestingly, the linear regression line, 

on a typical cold day, for gage line C slopes in the opposite direction (i.e., the load strain is 

increasing toward the abutment) as the gage lines A, B, and D. This behavior could possibly 

be explained by the location of line C being nearer to the center of the approach slab mass. 

Additional instrumentation near the centerline of the approach slabs may have revealed a 

gradient and explained the behavior difference. The load strain at the Bremer County Bridge 

also varies transversely, varying more on cold days (see Figure 4 for variations in lines A, B, 

C and D) than on hot days. This larger variation in load strain across and along the approach 

slab during winter months indicates that the slab is experiencing stresses during the winter 

months which are not present during the summer months. These stresses may be the result of 

the water freezing either the expansion joint or soil beneath the slab. Likely, this would result 

in the formation of bottom of slab “lugs” that significantly resisted slab movement. 

Force 

Figures 6 and 7 show the forces at the expansion and abutment joints of the O’Brien 

County and Bremer County Bridges, respectively. At both sites, a cyclical pattern emerges 

with the winter and summer having the maximum and minimum force, respectively, while 

the spring and fall are transition periods. As can be seen, the slab forces tend toward 

compression in the summer and tension in the winter. Upon closer inspection of the data, 

daily cyclic patterns emerge as well. Both bridges had a range of forces of approximately 200 

kips/ft. 

At the O’Brien County site, the forces at the expansion joint and at the abutment were 

generally of similar magnitude and coincided throughout the time. This would indicate that 

the primary source of force generation in the slab might be the expansion joint.  

However, at the Bremer County site, the force at the expansion joint and the abutment begin 

to deviate during the winter months – a behavior discussed previously and likely related to 

freezing water under the slab. In this case, during the cold months the largest force 

generating mechanism was likely friction on the slab bottom. 
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Figure 6. Average slab force across EF and abutment joints [O’Brien] 

 

 

Figure 7. Average slab force across EF and abutment joints [Bremer] 
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Friction 

Figures 8 and 9 show the friction coefficient with time for the O’Brien County and 

Bremer County bridges, respectively (a positive coefficient of friction indicates movement of 

the approach slab toward the abutment and negative coefficient indicates movement toward 

the expansion joint). The coefficient of friction for the O’Brien County Bridge had an 

approximate range of -1.9 to 1.9. Coefficients of friction greater than 1 indicate that the 

interface between the approach slab and the supporting soil was very rough. Field 

observations during construction indicate that the large horizontal forces at the O’Brien 

County site are due to construction problems related to grouting operations. 

For the Bremer County Bridge the coefficient of friction apparently reached nearly 20 

during the winter months, when the force in the EF and abutment joint varies most as shown 

in Figure 7 and discussed previously. This increase in the coefficient of friction during the 

winter months indicates the approach slab needs to overcome a much larger force during 

winter months than in summer months. The apparently large coefficient of friction in the 

Bremer County Bridge may be caused by the approach slab and supporting soil freezing as a 

unit. This may have created the previously mentioned “lug” effect that created active soil  

 

Figure 8. Bottom of slab friction over time – northbound bridge [O’Brien] 
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pressure at the face of the “lug”. During the summer months the coefficient of friction had 

similar ranges for both locations and was slightly larger at the Bremer County Bridge, which 

may be related to the type of soils at the site. 

 

Figure 9. Coefficient of friction over time [Bremer] 

Joint Movements 

For the O’Brien County bridge the crackmeters not located at the expansion joint showed 

less than 0.03 in. of relative movement during the test period. The crackmeter located at the 

expansion joint between the approach slab and pavement had a relative movement range of 

over 0.90 in. Figure 10 shows how the O’Brien County Bridge joint opening varies with 

temperature. On the Bremer County Bridge the crackmeters located along the abutment joint 

and pavement joint had relative movements of less than 0.02 in. The crackmeters located at 

the expansion joint also had a total range of 0.90 in. Figure 11 shows the Bremer County 

bridge expansion joint opening versus temperature. 

The data shown in Figures 10 and 11 corroborate the behaviors measured with the strain 

gages and discussed previously (e.g., the approach slab moving away from the expansion 

joint in winter and towards it in summer). Further, when viewed with time there is an 

apparent cyclic nature to the data. This cyclic nature can also be partially observed if one 
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accepts that temperature variation with time is, over long periods of time, generally 

consistent. Figure 12 shows that the compressive force in the slab increases as the expansion  

 

Figure 10. Expansion joint movement relative to average slab temperature [O’Brien] 

 

 

Figure 11. Expansion joint movements relative to average slab temperature [Bremer] 
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joint contracts for the O’Brien County Bridge. This same relationship is seen in Figure 13 for 

the Bremer County Bridge. Figure 13 also shows that the force varies transversely. The larger  

 

Figure 12. Slab force per unit width relative to expansion joint movement [O’Brien] 

 

 

Figure 13. Slab force per unit width relative to expansion joint movement [Bremer] 
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slope of the force at the expansion joint along line D of the slab for the Bremer County 

Bridge indicates the slab force behaves differently here from the force in other areas of the  

slab and, again, illustrates the transverse variation of the slab forces at the Bremer County 

site. 

The responses shown in Figure 12 generally follow an annual cyclic and/or short term 

cyclic pattern. The annual cyclic pattern had summer responses at one extreme, a transition 

through the fall to the other extreme response in the winter, followed by a transition in the 

spring back to the summer responses. Short term cycles (as indicated by the dashed lines 

which can be typically observed) were evident for both approach slabs and are likely caused  

by friction ratcheting. Friction ratcheting is a cyclic build-up of stress to overcome friction. 

During short term (daily) cyclic stresses build up in the slab that are not large enough to 

overcome the friction at the bottom of the slab before being released. During this short term 

build up and release of stresses the abutment is pushed by the expanding and contracting 

approach slab. This means that forces are being developed on both sides of the abutment – 

from the approach slab on one side and from the superstructure on the other. Not only is the 

expansion and contraction of the bridge superstructure acting on the abutment, there is also a 

force from the approach slab due to this build up and release of stresses. However, as 

temperatures continue their seasonal trend, the buildup of stresses becomes large enough to 

eventually overcome the slab friction and the slab slides to a new position where the short 

term cycles begin again without sliding. 

Visual Inspection 

During the monitoring periods the bridges at both locations were visually inspected. 

Cracks were observed in the approach slab of the O’Brien County Bridge at about 34 ft from 

the abutment joint. This crack was half the width of the approach slab extending from the 

East shoulder to the center longitudinal joint. No cracks were present in the precast approach 

slab panels or the cast-in-place shoulders of the Bremer County Bridge. In general it was felt 

that visible distress (however minor) could not be attributed to the fact that the approach slab 

had been integrally connected to the bridge. 
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Conclusions and Recommendations 

In an effort to reduce the bump experience at the end of bridges, the Iowa DOT is 

interested in integrally connecting the approach slabs to their I-A bridges. To investigate the 

performance of such a detail, year-long monitoring of two I-A bridges with precast approach 

slabs was conducted. The monitoring consisted of instrumenting the precast approach slab 

systems with strain gages and crack meters at two bridge sites. The data were interpreted and 

periodic visual inspections were conducted. The following conclusions were developed based 

on the findings of this study: 

 The integral connection between the approach slabs and the bridge appear to function 

well with no observed distress and little relative longitudinal movement.  

 The measured strains in the approach slabs indicate that a notable force exists at the 

expansion joint. This force approached a range of approximately 200 kips/ft in this 

work.  

 Notable frictional forces exist at the bottom of the approach slab.  

 The minor visible distress could not be attributed to the fact that the approach slab is 

integrally connected to the bridge.  

Based on the conclusions drawn from the data collected, the following recommendations 

for current practice and future studies should be considered when designing and constructing 

I-A bridges: 

 Prevention of the “bump at the end of the bridge” should be considered a design goal 

for all approach slabs. 

 The force which develops at the expansion joint should be taken into consideration 

when designing both the approach slab and the bridge. A more robust abutment may 

transfer less of the expansion/contraction force to the approach slab and more to the 

abutment foundation, resulting in less force at the expansion joint. A second 

alternative would be to reduce or even eliminate the interaction of the abutment and 

soil with the use of a mechanically stabilized earth wall placed between the abutment 

and earth fill.  

 The roughness of the supporting soil should be taken into consideration during the 

design process as well.  
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 As good engineering practice dictates, these recommendations should undergo a 

comprehensive testing program and be validated with further studies. Future studies 

should also ensure that approach slabs are instrumented throughout their entire width 

in order to determine if a gradient exists in the forces across the slab. 
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CHAPTER 4. FORENSIC INVESTIGATION OF A LOAD-TESTED POST 

GROUTED DRILLED SHAFT 

 

A paper to be submitted to ASCE Journal of Geotechnical and Geoenvironmental 

Engineering 

 

Anna Nadermann, Jeramy Ashlock, Brent Phares 

Introduction 

Post-grouting of drilled shafts has been employed around the globe for approximately 5 

decades, and has recently experienced increased usage in the U.S. Alternately referred to as 

tip grouting or base grouting, the technique involves pressure grouting to preload the soil 

below the shaft tip. The perceived advantages of post-grouting are (1) increased mobilization 

of end bearing capacity within service displacement limits by compressing loose or relaxed 

soils and construction debris, (2) quality assurance through verification of shaft capacity 

based on the achieved grouting pressure, and (3) cost savings by enabling shafts in sandy 

soils to be shortened due to the increased usable end bearing. The 2010 replacement of the 

Broadway (US 6) Viaduct in Council Bluffs, IA was the first Iowa Department of 

Transportation project to implement post-grouting of drilled shafts. The viaduct is 1,537 ft in 

length between centerlines of the abutment bearings and includes 11 piers and a total of 53 

production post-grouted drilled shafts.  

Nearly all design methods for drilled shafts rely primarily on the side shear component 

and utilize only a fraction of the end bearing because of the large displacements required to 

fully mobilize the ultimate end bearing capacity. A design technique being used worldwide to 

regain some of this end bearing is pressure grouting (i.e. post grouting or base grouting) the 

shaft (Mullins et al. 2006). Such a process allows the soil below the shaft tip to be pre-

compressed before the shaft is loaded. The technique requires a grout distribution system to 

enable high-pressure injection of grout below the base of the shaft after the concrete has 

cured. Pressure to which the grout can be pumped is dependent upon the available side shear 

so as to prevent failure during the grouting process. 
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Two load test programs featuring grouted and ungrouted shafts were carried out for the 

Broadway Viaduct site to evaluate the capacity increase due to post-grouting, assess the cost 

effectiveness and suitability of the technique, and determine parameters for use in design. 

The first load test program (LTP1) was performed in 2008 and included Statnamic load tests 

of one 55 ft long ungrouted control shaft and two grouted shafts 55 and 65 ft in length. The 

test shafts featured tube-a-manchette (sleeve port) grout distribution systems and were 

installed with a center to center spacing of 40 ft in an equilateral triangle pattern. The grout 

tubes became partially plugged during grouting and the resulting unit ultimate end bearing 

values determined by Statnamic testing were lower than predicted. Based on the Statnamic 

test results, it was estimated that grout pressure acted on only 50% of the pressure plate area 

(CH2MHill, 2008). In an effort to answer questions raised by LPT1 and provide useful 

parameters for design, a second load test program (LTP2) was performed adjacent to the 

Broadway Viaduct in 2010. LTP2 featured Osterberg cell (O-cell) load tests of one 75 ft 

ungrouted control shaft and one 75 ft grouted shaft with a flat-jacking grout distribution 

system. Additionally, four Geokon model 4850 stress cells were installed in the grout 

distribution plate to verify whether the grout pressure acted over the entire shaft area. Both 

test shafts were fitted with a series of strain gages for monitoring during load testing and for 

later analysis of the post grouting and load testing.  

A substantial volume of grout was pumped below the tip of the post-grouted shaft in 

three stages, yet only a fraction of the target grouting pressure was achieved. Relative to the 

ungrouted control, the grouted shaft exhibited a greater initial stiffness but no increase in 

ultimate end-bearing capacity. This paper details the site conditions, grouting program, load 

test results and the findings of a groutability study and forensic investigation conducted in an 

effort to determine the spatial distribution of the grout and explain the poor performance of 

the post-grouted shaft in LTP2. 

Site Description 

LTP2 consisted of two test shafts referred to as TS3 (ungrouted) and TS4 (grouted). 

Subsurface investigation at the centerlines of the two shafts indicated that the soil consisted 

primarily of fine sand with silt over a layer of silty clay between 18.5 and 23.5 ft, underlain 

by loose to dense fine sand with traces of gray fat clay, gravel and lignite below 63 ft. The 
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water table was located at a depth of approximately 20 ft. The test shafts were 75 ft. long 

with a 66 in. diameter to a depth of about 11 ft. and 60 in. diameter for the remainder of the 

shaft. The bottoms of the O-cells were located at a depth of 60 ft to balance failure between 

end-bearing and upward shearing modes.  

Background 

This section focuses on the sequence of events for LTP2. The capacity of the drilled 

shafts is discussed followed by the post grouting procedures and the load test. Finally, the 

production shaft post grouting is discussed.  

Capacity of Ungrouted and Grouted Drilled Shafts 

The capacity of the shafts was calculated using the AASHTO design method (AASHTO 

1998), in which the unit side resistance is represented in clayey soils by 

 qs =     (4.1) 

and in sandy soils by  

 qs =     
  (4.2) 

where  is an adhesion factor, Su is the mean undrained shear strength,  is a load transfer 

coefficient and    
   is the vertical effective stress. The unit end bearing is related empirically 

to the SPT blow count by  

 qp (ksf) =      (4.3) 

where N is representative of the soil within two diameters below the shaft tip and qp is in ksf. 

The load transfer coefficient is taken as  

 β =  
 
 

  
                       

                      
  (4.4) 

Using Equations 4.1 – 4.4, the total side resistance and ungrouted end bearing capacities 

of TS4 were determined to be Qs = 1723 kips and Qp = 342 kips, respectively, for a total 

capacity of 2065 kips. The ungrouted total side resistance and ungrouted end bearing 

capacities of TS3 were determined to be Qs = 1112 kips and Qp = 330 kips, respectively, for a 

total capacity of 1442 kips. These capacities do not include a factor of safety and ignore the 

top five feet of the shaft as recommended by the AASHTO design method.  
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Mullins et al. (2006) developed an empirical design method for post grouted drilled shafts in 

sands based on studies involving full-scale Statnamic tests. In the method, the ratio of the 

maximum grouting pressure (GPmax) to the ungrouted end bearing capacity (qp) at 5%D 

displacement is referred to as the grouting pressure index (GPI). The maximum grouting 

pressure is calculated as that which would mobilize the ultimate side shear capacity in uplift 

using an appropriate factor of safety. The unit end bearing capacity of a post grouted drilled 

shaft is then related to the unit ungrouted end bearing capacity through the tip capacity 

multiplier (TCM) as shown here:  

 qgrouted =           (4.5) 

where the empirical tip capacity multiplier (TCM) given in Mullins et al. (2006) is 

 TCM =                   
  

        
   (4.6) 

and %D is the chosen allowable tip displacement expressed as a percentage of the shaft 

diameter. According to that study, post grouting of shafts tipped in formations other than 

sand (i.e. clays, silts, and rock) can also prove beneficial. For instance, side shear and end 

bearing can be engaged simultaneously for pressure grouted shafts tipped in rock. More 

recently, a modification of the TCM of Eq. 4.6 was demonstrated by Dapp et al. (2010) to 

more closely match observations from nine O-cell tests of 7.5 ft diameter 200 ft long post-

grouted drilled shafts at the Audubon Bridge in Louisiana.  

Using the calculated side shear resistance for TS4 of 1723 kips, the GPmax was calculated 

to be 609 psi, with a factor of safety FS = 1. This grouting pressure coupled with the 

calculated ungrouted end bearing of 342 kips leads to a GPI of 4.8. Stipulating a 

displacement limit of one inch, by Eq. 4.6, the TCM for TS4 is 4.9. Using Eq. 4.5 then 

provides a grouted capacity for TS4 of   Qp-grouted = 1635 kips 

Post Grouting Procedure  

Prior to the post grouting of TS4; the integrity of the test shafts was investigated. A 

SoniCaliper test and a Cross-hole Sonic Logger (CSL) test were performed. Both tests 

indicated there were no anomalies in the test shafts. 

The post grouting procedure was carried out by Applied Foundation Testing and was 

observed by the authors. The grout distribution apparatus used for TS4 was a flat jack grout 
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distribution plate. Ash Grove Type I/II Portland Cement and water were used for a neat 

cement grout with a starting water/cement ratio of 0.50. This ratio was incrementally 

decreased to a minimum of 0.42 in the second and third grouting stages. Based on the results 

of LTP1 (see Farouz et al., 2010) the target grout pressure was 650 psi with a maximum 

permissible displacement of 0.25 in. and a minimum grout volume of 3.0 ft
3
 pumped below 

the toe of the drilled shaft. However, after pumping more than 34 ft
3
 of grout below the shaft, 

the grout pressure did not build as expected and staged grouting was implemented. A total of 

three stages were used without approaching the target grout pressure. The staged grouting 

followed the procedure outlined in Mullins (2004). Table 4 lists a summary of the results for 

all three stages. The maximum sustained grout pressure was 140 psi and the final volume of 

grout placed was 156 ft
3
 (5.7 yd

3
), which is equivalent to a 6.7 ft diameter sphere, or a 

cylinder of diameter equal to the shaft with a height of 7.9 ft. For reference, a grout pressure 

of 660 psi was achieved in LTP1 with a grout volume equivalent to a cylinder of only 1 ft 

height. 

Table 4. Test Shaft Post Grouting Results 

Stage 
Maximum Grout 

Pressure (psi) 

Upward Shaft 

Displacement (in.) 

Net Grout Volume 

Placed (ft.
3
) 

1 90 0.031 34.3 

2 140 0.026 98.1 

3 90 0.019 23.1 

 

TS3 and TS4 were instrumented with a total of 22 Geokon Model 4911 vibrating wire 

rebar strain gages at the depths listed in Table 5 (LoadTest, 2010) for analysis purposes as 

well for monitoring during load testing. AFT provided the authors with the data obtained 

during grouting, the data was corrected according to the strain gage manuals including 

temperature effects. Further analysis, by the authors, of the strain data during the post 

grouting process revealed the shaft was in bending about the North-South axis and the East-

West axis during all three stages of grouting.  

During first stage of grouting there was almost negligible bending in both directions at 

the tip of the shaft. The bending moments about the North-South axis, according to the right-

handed coordinate system, were negative while the bending moments about the East-West 
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axis were positive during the first stage of grouting. The largest bending forces during the 

first stage were predominately about the North-South axis  

Table 5. Strain Gage Locations 

Strain Gage 

Level 

Distance 

Below Top 

of Shaft 

(ft.) 

Number of 

Strain 

Gages per 

Level 

1 73.3 4 

2 65.3 3 

3 55.3 3 

4 45.3 3 

5 35.3 3 

6 25.3 3 

7 10.3 3 

 

and occurred just below and just above the O-cell which was located at a depth of 60 ft. The 

bending forces began to diminish along the length of the shaft above the O-cell during the 

first stage of grouting. Bending in the first stage of grouting was in a consistent direction 

over the length of the shaft and over the duration of time. During the second stage of grouting 

the bending forces were of similar magnitude in both directions but the strains did not 

diminish with distance above the O-cell. Also unlike the first stage, during the second stage 

of grouting the direction of bending was inconsistent over the length of the shaft and over the 

duration of grouting. The bending forces were much more erratic and complex during the 

second stage of grouting as compared with the first stage. Bending about the North-South 

axis during the third stage of grouting was similar that of the first stage of grouting, with the 

largest bending forces concentrated near the O-cell and diminishing with distance from the 

O-cell. The bending forces about the East-West axis during the third stage were consistent 

with time similar to the first stage, though the bending forces with depth were not similar to 

the first stage. During the third stage of grouting the largest bending forces occurred about 

the East-West axis and nearest to the ground surface rather than nearest the O-cell. 

Load Testing 

Each test shaft was equipped with a 24 inch diameter, 3,000 kip Osterberg cell (O-cell) 

installed at a depth of 60 ft. Standard load test instrumentation also included three 

displacement transducers to measure expansion between the top and bottom O-cell plates, 
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two telltales to measure shaft compression, and two automated digital survey levels to 

measure the top of shaft displacement.  

A comparison of the load-displacement curves for the two test shafts is shown in Figure 

14. As seen in the figure, the grouted TS4 exhibited an initially stiffer response both above 

and below the O-cell, and a more sudden, plunging failure of the lower portion at a smaller 

ultimate capacity than the ungrouted TS3. The maximum bi-directional load for the 

ungrouted shaft was 1,308 kips inducing displacements of 0.81 in. upward and 4.65 in. 

downward above and below the O-cell, respectively. For the grouted shaft, however, the 

maximum applied load was 1,221 kips with displacements of 0.37 in. upward and 5.30 in. 

downward. The failure of TS4 is indicative of a plunging mode indicating no increase in tip 

capacity from grouting. The greater stiffness may be a result of a slight increase in shaft area 

near the tip due to grout traveling up the sides (see Fernandez et al. 2007). 

 

Figure 14. Comparison of load with displacement for TS3 and TS4 

An increased stiffness can also be attributed to the influence of skin friction stress reversal as 

described in Ruiz et al. (2009), although this is less likely because the grout pressure was not 

locked-in for this shaft. The difference in grouted and un-grouted stiffness is quantified in 
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Figure 15, which contains the incremental secant stiffness of the soil-shaft systems during 

each load step. As shown in the figure, the initial stiffness of TS4 is nearly nine times greater 

than the ungrouted TS3. Table 6 indicates the mobilized net unit side shear of the shafts at 

the maximum applied load as calculated by LoadTest and the authors.  

 

Figure 15. Comparison of shaft stiffness for TS3 and TS4 

The difference in reported net unit side shear values can be attributed to the difference in 

reported buoyant weight of the shaft above the O-cell. The net load, defined as the force 

applied by the O-cell minus the buoyant weight of the shaft above the O-cell, is used to 

determine the net unit side shear above the O-cell. The buoyant weights above the O-cell as 

reported by LoadTest for TS3 and TS4 were 139 kips and 142 kips, respectively. The authors 

determined the buoyant weight above the O-cell of TS3 and TS4 to be 139 kips for both 

shafts, leading to the slightly different values of net unit side shear with depth. This 

discrepancy in buoyant weight could likely be due to use of water table elevations differing 

by approximately 2.5 feet, which is within the range of variation for the various boring logs 

from the project. However, the water table elevations used by the authors were consistent 

with those given in the LoadTest reports.  
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To calculate the maximum end bearing load of the shafts, the net unit side shear 

measured between Level 2 and Level 1 strain gages was also assumed to act between Level 1 

and the shaft tip. The net side shear force acting on each shaft section was subtracted from 

the maximum O-cell load to determine the resultant axial force in the shaft at strain gage  

Table 6. Mobilized Net Unit Side Shear as Reported by LoadTest (2010) and the 

Authors 

 LoadTest Authors 

 TS3 (ungrouted) TS4 (grouted) 
TS3 

(ungrouted) 

TS4 

(grouted) 

 

Load 

Direction 

& Disp. 

Net Unit 

Side Shear 

Load 

Direction 

& Disp 

Net Unit 

Side Shear 

Net Unit 

Side Shear 

Net Unit 

Side Shear 

Zone (in.) (ksf) (in.) (ksf) (ksf) (ksf) 

Top - Level 7 ↑ 0.80 0.20 ↑ 0.35 0.21 0.21 0.21 

Level 7 - Level 6 ↑ 0.80 0.31 ↑ 0.35 0.55 0.33 0.62 

Level 6 - Level 5 ↑ 0.80 1.85 ↑ 0.35 0.89 1.92 0.93 

Level 5 - Level 4 ↑ 0.81 1.37 ↑ 0.36 1.30 1.41 1.35 

Level 4 - Level 3 ↑ 0.81 1.25 ↑ 0.36 0.81 1.25 0.83 

Level 3 - O-cell ↑ 0.81 4.29 ↑ 0.36 5.31 4.45 5.40 

O-cell   - Level 2 ↓ 4.65 3.82 ↓ 5.30 5.93 3.85 5.97 

Level 2 - Level 1 ↓ 4.65 1.29 ↓ 5.30 0.11 1.31 0.10 

 

elevations as well as the end bearing. Using the nominal diameter of 60 in., the authors 

determined the end bearing load to be 805 kips for the ungrouted TS3 and 736 kips for the 

grouted TS4, corresponding to end bearing pressures of 41.0 ksf and 37.5 ksf , respectively. 

The end bearing loads and pressures determined by the authors agree with those reported by 

LoadTest. The end bearing capacity of the grouted shaft is 9% lower than that of the 

ungrouted shaft, indicating that post-grouting of TS4 did not improve the end bearing 

capacity. This lack of improvement is likely due to the inability to reach the design grouting 

pressure. As a result, three mechanisms believed to contribute to capacity improvement; 

namely preloading the soil below the shaft tip, stress reversal of the skin-friction, and 

increased bearing area by formation of a grout bulb were not realized (see Fernandez et al. 

2007, Ruiz and Pando 2009).  

Prior to the construction of TS3 and TS4, confirmation borings were completed in an 

attempt to have the most accurate soil profiles possible for the shafts. The SPT results of 

these borings indicated TS3 and TS4 to be tipped in fine to coarse sand with traces of sandy 

clay and gravel. Within three shaft diameters above TS3 and TS4 the average SPT blow 
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counts were 9.3 and 12.7, respectively. Within three shaft diameters below TS3 and TS4 the 

average SPT blow count was 13.7 and 16.0. The SPT results indicates that both TS3 and TS4 

were tipped in similar material, thus the lack of improvement for the post grouting of TS4 

cannot be attributed to the shafts being tipped in dissimilar material. 

Post Grouting of Production Shafts 

The intent of LTP2 was to allow all production shafts on the project to be shortened 

based on the increase in mobilized end-bearing observed for TS4. Although grouting of TS4 

was unsuccessful, grouting of the production shafts was still performed as planned while 

forgoing any shortening of the shafts. The results of the post grouting of the production shafts 

can be found in Table 7, the results of the test shafts are included for comparison purposes.  

Table 7. Post Grouting Results for All Drilled Shafts 

Drilled 

Shaft 

Drilled 

Shaft 

Diam. 

As-built 

Drilled 

Shaft 

Embed. 

Length 

Post 

Grouted 

Measured 

Ultimate 

Capacity 

Measured 

Unit 

Ultimate 

End 

Bearing 

Measured 

Ultimate 

End 

Bearing 

Measured 

Ultimate 

Side 

Resistance 

  (ft) (ft) 

 

(kip) (ksf) (kip) (kip) 

TS3* 5 75 No 1513 41 805 708 

TS4* 5 75 Yes 1340 37 736 604 

P1N 5 50 Yes 1534 42 820 714 

P1Shaft1 5 50 Yes 2439 65 1272 1167 

P2N 5 70 Yes 2235 60 1188 1048 

P2S 5 70 Yes 2733 73 1436 1296 

P3N 5 65 Yes 2656 71 1394 1263 

P3S 5 65 Yes 1673 46 902 771 

P10Shaft1 5 70 Yes 3553 94 1846 1706 

P11Shaft 2 5 55 Yes 2261 60 1188 1073 

EAbutS1 5 50 Yes 1698 46 902 796 

EAbutS2 5 50 Yes 1941 52 1024 918 

*Test shaft 

 

Post grouting the production shafts provided the benefit of verifying the mobilized end 

bearing and side shear of the production shafts at a specified maximum upward displacement 

of 0.25 in. For this purpose, the verified end bearing capacity of production shafts was 

determined as the maximum grouting pressure multiplied by the shaft tip area of 19.64 ft
2
. 

The verified side shear capacity was calculated as the actual grouting force at the tip minus 
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the shaft buoyant weight. Using this procedure, Figure 16 shows the predicted end bearing, 

shear resistance and total capacities as they correlate to the measured values for the six 

production shafts which had grouting data available. There appears to be a stronger 

correlation in the predicted versus measured values for shear resistance than for the end 

bearing.  

 

Figure 16. Predicted production shaft capacity versus measured production shaft 

capacity 

Table 8 provides the ratio of predicted grouted capacity to measured grouted capacity of 

the production drilled shafts which were used in Figure 16. The predicted side shear capacity 

of production shafts was determined using the average unit side shear acting over three 

sections of TS4 during the O-cell test. The unit shear resistance values used were 0.25 ksf for 

the upper 20 ft, 2.0 ksf between 20 and 60 ft, and 2.2 ksf between 60 and 75 ft.  Of the six 

production shafts analyzed, three had under predicted the grouted side resistance by up to 

11%. The grouted side resistance of production shafts P2N and P3S closely matched their 

measured grouted side resistance. The remaining three shafts were over predicted by a range 

of 18% to 51%. The predicted end bearing capacities of P1N and P2N closely matched their 
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measured grouted end bearing, while the predicted end bearing capacities of P1Sh1, P2S, and 

P3N were over predicted by a range of 31% to 70%. The predicted end bearing capacity of  

Table 8. Predicted Capacities of Production Shafts 

Drilled 

Shaft 

Predicted 

Ultimate 

Side 

Resistance 

Predicted 

Ultimate 

End 

Bearing  

Predicted 

Ultimate 

Total 

Capacity 

Post 

Grouted 

Predicted/

Measured 

Ultimate 

Side 

Resistance 

Predicted/

Measured 

Ultimate 

End 

Bearing 

Predicted/

Measured 

Total 

Capacity 

  (kip) (kip) (kip)         

P1N 1042 1144 2186 yes 89% 90% 90% 

P1Sh1 1042 1392 2434 yes 146% 170% 159% 

P2N 1240 1510 2750 yes 96% 105% 101% 

P2S 1240 1560 2800 yes 118% 131% 125% 

P3N 1160 1380 2540 yes 151% 153% 152% 

P3S 1160 1092 2252 yes 92% 78% 85% 

 

P3S was under predicted by 22%. The degree of over prediction was similar for both side 

resistance and end bearing capacities and therefore the over prediction of the total capacity of 

the shafts followed the same trend. The predicted total capacity of P2N was within 1% of the 

measured total capacity. The predicted total capacity of P1N and P3S were under predicted 

by up to 15% while the total capacity of the remaining three shafts was over predicted by a 

range of 25% to 59%. 

The improvement of the capacity of the drilled shafts due to post grouting can be seen in 

Table 9.  

Table 9. Improvement Due to Post Grouting of Production Shafts 

Drilled 

Shaft 

Ungrouted 

Predicted 

Ultimate 

Side 

Resistance 

Ungrouted 

Predicted 

Ultimate 

End Bearing  

Ungrouted 

Predicted 

Ultimate 

Total 

Capacity 

Grouted/ 

Ungrouted 

Verified Side 

Resistance 

Grouted/ 

Ungrouted 

Verified 

End Bearing 

Grouted/ 

Ungrouted 

Total 

Capacity 

  (kip) (kip) (kip)       

P1N 1042 518 1560 112% 246% 156% 

P1Sh1 1042 518 1560 69% 158% 98% 

P2N 1240 448 1688 105% 321% 161% 

P2S 1240 448 1688 84% 265% 133% 

P3N 1160 448 1608 66% 201% 104% 

P3S 1160 448 1608 109% 311% 165% 
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The predicted ungrouted side resistance was determined using the same unit shear resistance 

factors as were used above for the grouted calculations. The predicted ungrouted end bearing 

was determined using Eq. 4.3. The side resistance of the shafts saw little to no improvement 

from post grouting, although the post grouting did improve the end bearing, more than three 

times in some cases. The improvement of end bearing due to post grouting ranged from 58% 

to 221% over the predicted ungrouted end bearing. Five of the six productions shafts saw 

improvement in total capacity from post grouting. While production shaft P1Sh1 did not see 

improvement in total capacity and production shaft P3N saw a minimal 4% improvement in 

total capacity, the remaining four production shafts saw verified/minimum improvements 

ranging from 33% to 65%. 

Forensic Investigation 

A forensic investigation was undertaken to determine the reason for the lack of grout 

pressure buildup beneath TS4 despite staged grouting with a large grout take of 6 cubic 

yards, which led to poor performance in the load test. In contrast to the tube-a-manchette 

grout distribution system of LTP1, measurements from the stress cells during grouting 

indicated that grout pressure acted uniformly over the shaft tip with the flat-jacking system. 

However, the migration path of the rather large volume of grout is unclear. Possible 

migration paths include grout traveling vertically up the sides of the shaft, horizontally in a 

gravel seam or highly permeable layer, downward directly below the shaft, or possibly 

entering a large void. The experimental plan included five boreholes spaced around the 

perimeter of the shaft, in which SPT tests with sampling were performed at 5 ft intervals for 

the first 40 ft, and continuously between depths of 40 and 85 ft. Due to the predominantly 

sandy profile, mud rotary boring was used, with a 2-1/4 inch rotary bit and bentonite slurry. 

The continuous sampling and SPT testing were intended to identify the location of grout 

through increased blow counts and physical confirmation of the presence of grout in the 

samples. Figure 17 shows the blow counts for confirmation boreholes at the centerlines of 

TS3 and TS4 along with those in which grout was found in the forensic investigation 

boreholes. Over the 70 to 80 ft depth, which is the region in which layers of grout were found 

on the North and East sides of TS4, the forensic boreholes C1 and C2 exhibit slightly higher 

blow counts compared to the confirmation borehole of TS4. The forensic boreholes were 
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placed within 3 to 14 inches of the shaft perimeter in an attempt to achieve a balance between 

detection of a grout bulb near the shaft tip or a layer of grout formed by horizontal flow 

through a gravel seam.  

 

Figure 17. Comparison of blowcount before drilling and during forensic investigation 

Groutability Study 

Prior to field testing, the groutability of the soil was studied by analyzing samples taken 

from TS4 as well as three production shafts. Four methods for determining the groutability of 

a soil sample employing various soil and grouting parameters were examined. Each method 

uses a different relationship to determine a groutability index, Ng. Table 10 lists the soil 

parameters, grouting parameters, and relationships for each method.  

Three of the methods consider only ratios of grain-sizes of soil and grout, which is 

primarily relevant for permeation grouting. A study by Akbulut and Saglamer (2002) further 

incorporated relative density (Dr) and finer content (FC, defined as percent passing a 0.6 mm 

sieve), grouting pressure (P), and grout water to cement (w/c) ratio, as each of these 

parameters also affects the groutability of a soil. However, it should be noted that the study 

was focused on permeation rather than compaction grouting, and had the following 
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limitations: (1) the finer content ranged from 0 to 6%, (2) the water-to-cement ratio was 

between 0.8 and 2.0, and (3) grouting pressure did not exceed 200 kPa (29 psi). Staged 

grouting as performed for TS4 is often designed to cause permeation grouting followed by 

compaction grouting. Permeation grouting can allow for easy creation of large grout bulbs, 

while compaction grouting can dramatically improve soil stiffness (Mullins et al. 2001). Both 

grouting methods can therefore create conditions known to improve the end-bearing of 

drilled shafts. 

Table 10. Groutability Study Relationships  

Method 
Soil 

Parameters 
Relationship Comments 

Akbulut & 

Saglamer 

D10, d90, k1, 

w/c, FC, k2, 

P, Dr 

   
   
   

    
 
  

  
   

 

  
 

If N>28 granular soil can 

be grouted. If N<28 

granular soil cannot be 

grouted, 

 

Burwell (1) D15, d85 
   

   
   

 
If N>25 grout can 

successfully be injected, but 

apply Burwell (2) as well. 

If N<11 grout cannot 

successfully be injected. 

 

Burwell (2) D10, d95 
   

   
   

 
If N>11 grouting is 

possible. If N<5 grouting is 

not possible. 

 

Incecik & 

Ceren 

D10, d90 
   

   
   

 
If N>10 grouting is 

possible. 

 

where, 

 Dx = the diameter through which x% of total soil mass is passing 

 dx = the diameter through which x% of total grout mass is passing 

 Dr = relative density 

 k1 = constant based on test experiences, taken as 0.5 (Akbulut and Saglamer 2002) 

 k2 = constant based on test experiences, taken as 0.5 (Akbulut and Saglamer 2002) 

 FC = finer content % of the total soil mass passing through 0.6 mm sieve 

 w/c = water-to-cement ratio 
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Three soil samples from production shafts (P3-S2, P2-S2, and E. Abut.) and two from 

TS4 (TS4 Light and TS4 Dark) were collected during excavation of the shaft tips. For 

comparison purposes, data collected from soil samples at the base of the post grouted shafts 

of LTP1 were also investigated. The LTP1 data from Test Shaft 1 (TS1S-13) and Test Shaft 

2 (TS2S-14) were used. The soil and grouting parameters for each of the soil samples are 

listed in Table 11.  

Table 11. Soil and Grouting Parameters (Actual Grouting Pressure) 

 Soil Parameters Grouting Parameters 

Samples Dr D10 D15 D85 FC w/c 
P  

(psi) 

P 

 (kPa) 
d95 d90 d85 

P3-S2 0.40 0.0087 0.0707 1.1004 0.81 0.44 319 2198 0.043 0.034 0.028 

P2-S2 0.46 0.0723 0.1154 0.4142 0.89 0.43 508 3500 0.043 0.034 0.028 

E. Abut. 0.48 0.0799 0.1195 0.4002 0.96 0.50 362 2494 0.043 0.034 0.028 

Light 0.38 0.0821 0.1193 0.3397 0.99 0.46 107 737 0.043 0.034 0.028 

Dark 0.33 0.0324 0.0954 1.3353 0.74 0.46 107 737 0.043 0.034 0.028 

TS1S-13* 0.40 0.0852 0.1301 1.5996 0.63 0.48 662 4561 0.043 0.034 0.028 

TS2S-14* 0.52 0.0886 0.1159 0.3362 0.93 0.48 662 4561 0.043 0.034 0.028 

*Sample from LTP1 

 

Groutability was analyzed using the design water/cement ratio of 0.5 and grouting 

pressure of 650 psi (4550 kPa) as well as the average actual w/c ratio and grouting pressures 

achieved, none of which reached the target of 650 psi. The results of the groutability analysis 

using design parameters are shown in Table 12.  

Table 12. Design Groutability Index 

Samples 
Akbulut & 

Saglamer 
Burwell (1) Burwell (2) Incecik & Ceren 

 Ng Comments Ng Comments Ng Comments Ng Comments 

P3-S2 113 Groutable 2.5 Not groutable 0.20 Not groutable 0.26 Not groutable 

P2-S2 102 Groutable 4.1 Not groutable 1.7 Not groutable 2.1 Not groutable 

E. Abut. 97 Groutable 4.3 Not groutable 1.9 Not groutable 2.4 Not groutable 

Light 123 Groutable 4.3 Not groutable 1.9 Not groutable 2.4 Not groutable 

Dark 139 Groutable 3.4 Not groutable 0.75 Not groutable 0.95 Not groutable 

TS1S-13* 118 Groutable 4.7 Not groutable 2.0 Not groutable 2.5 Not groutable 

TS2S-14* 91 Groutable 4.1 Not groutable 2.0 Not groutable 2.6 Not groutable 

*Sample from LTP1 

Although the parameters of this study fall outside the ranges from which the equation of 

Akbulut & Saglamer was developed, the method indicates that all of the samples are 

groutable using the design parameters, whereas the other indices based on grain-sizes alone 

indicate that the soils are not groutable (Table 12). Using the actual pressures recorded 
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during grouting, the method of Akbulut and Saglamer indicates that the production shafts are 

groutable while TS4 is not (see Table 13), which agrees with the observed results.  

Table 13. Actual Groutability Index 

Samples 
Akbulut & 

Saglamer 
Burwell (1) Burwell (2) Incecik & Ceren 

 Ng Comments Ng Comments Ng Comments Ng Comments 

P3-S2 55 Groutable 2.5 Not groutable 0.20 Not groutable 0.26 Not groutable 

P2-S2 79 Groutable 4.1 Not groutable 1.7 Not groutable 2.1 Not groutable 

E. Abut. 54 Groutable 4.3 Not groutable 1.9 Not groutable 2.4 Not groutable 

TS4-Light 22 Not groutable 4.3 Not groutable 1.9 Not groutable 2.4 Not groutable 

TS4-Dark 24 Not groutable 3.4 Not groutable 0.75 Not groutable 0.95 Not groutable 

 

This is simply due to the low achieved grouting pressure for TS4 which the method would 

not have predicted. However, use of a groutability index which takes into account the 

grouting pressure and fines content among other parameters may prove useful for efficiently 

identifying ungroutable soils on future projects. The forensic investigation described herein 

was undertaken to help determine why the design grouting pressure could not be achieved for 

TS4.  

Ultrasonic Imaging Tests 

Previous studies of tip grouting have revealed that grout commonly migrates upwards a 

distance of a few shaft diameters, covering the shaft in 1 to 2 inches of grout (Mullins, 2006). 

In addition to the increased stiffness and capacity resulting from three effects of grouting 

mentioned above, the diameter of the shaft is also effectively increased in this zone (i.e. skin 

grouting), further increasing the contributions to stiffness and capacity from skin friction. 

Although the SPT sampling program as planned may have been capable of identifying a 

horizontal grout flow or bulb, it could not realistically detect 1-2 inches of grout migrating up 

the surface of the shaft at depths of 65-75 ft. Similarly, grout flowing downward below the 

shaft tip would not be detected by vertical exploratory borings. A number of geophysical 

methods were therefore considered for imaging the extent of grout traveling up the surface of 

the shaft and below its tip. Among the methods considered were gamma-gamma logging, and 

cross-hole sonic logging (CSL) between existing CSL tubes in the shaft and additional tubes 

grouted into the surrounding soil. However, consultation with engineering firms experienced 

in nondestructive evaluation indicated that none of the currently available nondestructive 
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testing methods possessed sufficient resolution to detect a 1-2 inch thick layer of grout 

around the shaft perimeter at the required depths. Imaging of the shaft and grout was 

therefore attempted using a new experimental high-resolution ultrasonic p-wave imaging 

probe developed at UCLA (Brandenberg and Coe 2010).  

The ultrasonic probe consists of a 2 in. x 4 in. stainless steel case with a pointed tip (see 

Figure 18). The probe uses an ultrasonic p-wave reflection imaging system to delineate the 

surface of foundations in soil (Coe 2010). The probe contains two piezoelectric ultrasonic 

transducers, acting as source and receiver, a signal amplifier, and a high voltage pulser 

circuit. The probe is attached to standard CPT rods and typically pushed into soft soils by a 

CPT rig. A digital string potentiometer was mounted on the drill rig to trigger the pulses at 1 

cm intervals. The ultrasonic probe data acquisition system includes National Instruments 

signal generation, data acquisition, and oscilloscope cards in a PXIe chassis and a personal 

computer equipped with LabVIEW software.  

 

Figure 18. Ultrasound probe in 35 gallon drum of water 

While the probe had previously been used to successfully image a foundation in soft bay 

mud (Brandenberg and Coe, 2010), the technique required modification for operation in the 
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fine sands at the Broadway Viaduct site. In particular, based on previous experience in the 

project area, the drillers indicated that the drill rig would not be able to push the probe and 

safely retrieve it because of the large resistance and collapsibility of the fine sands. To 

overcome these difficulties, two new approaches were devised for advancing the probe. The 

first approach involved drilling a 6.5 inch diameter borehole stabilized by bentonite drilling 

mud and polymer additives, then lowering the suspended probe into the pre-bored hole rather 

than forcing it into the sands. However, laboratory tests indicated that the ultrasonic p-wave 

was greatly attenuated by bentonite slurry, and the transducers were rendered unusable if 

polymer additives were used. The reduced effectiveness of the probe in the bentonite slurry 

may have been partially caused by a lack of complete saturation of sand in the lab despite 

vacuum saturation techniques. Therefore, it was decided to attempt this approach in the field 

as the sand was expected to be fully saturated in situ.  

A second testing method was devised involving casing the same pre-bored hole with a 6 

inch diameter PVC pipe, flushing the drilling mud from the pipe leaving it filled with water, 

then lowering the probe down the water-filled pipe. The delay lines of the ultrasonic 

transducers are optimized to work in water, and this approach would therefore minimize 

performance degradation associated with the suspended bentonite particles in the first 

approach. Laboratory tests indicated that the probe could image the inside of a 35 gallon 

drum filled with water, effectively “seeing through” the PVC pipe. However, the wall of the 

6 inch diameter pipe caused multiple early reflections which combined with those from the 

target outside of the pipe. The early reflections were successfully minimized by attaching a 

horizontal circular divider plate between the source and receiver transducers in the gap 

between the probe and pipe, which also served as a centralizer for the probe body. The 

divider consisted of a sheet of rubber supported by an acrylic plate, and functioned as a 

wave-blocker for the unwanted early deflections.  

Previous tests of the probe in sand by its developers revealed that complete saturation of 

the sand was necessary for useful signals, as the presence of small amounts of air resulted in 

scattering of the p-wave energy. While it is expected that saturation of the sand in the field 

should be near 100% given the age of the deposit and the depth below the water table, 

creating a fully saturated, large specimen in the laboratory required careful preparation. The 
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laboratory samples were therefore vacuum-saturated under a vacuum of 15 bar, while CO2, 

was introduced into the bottom of the sample to displace air bubbles. The sample was then 

saturated from the bottom up using de-aired water. The results of the laboratory test of the 

ultrasound probe in a PVC cased borehole in a 35 gallon drum of saturated sand can be seen 

in Figure 19.  

 

Figure 19. Signal plot with probe in 35 gallon drum of saturated sand with PVC 

Continuous SPT Tests 

Ultimately, five continuous sampling boreholes (C1 through C5) were placed around the 

diameter of TS4. The continuous sampling was started at 40 ft., as the grout would not likely 

have traveled this far up the side of the shaft. In general, continuous sampling continued to 5 

ft. below the shaft base, a depth of 80 ft. The bore holes were located 8 to 10 in. from the 

perimeter of TS4 at the ground surface. Figure 20 shows the placement of the boreholes 

around TS4. According to the drillers, the water table was located at 18 ft. for boreholes C1, 

C2, and C3 while the water table was not reported for boreholes C4 and C5.  

The first continuous sampling borehole, C1, revealed a layer of grout approximately 2 in. 

thick at a depth of 74 ft between a layer of fat clay with sand and a layer of gravel. A 3 in.  
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Figure 20. Forensic borehole locations around TS4 

layer of grout was encountered at a depth of 74 ft in borehole C2 between layers of fat clay 

with sand. No grout was encountered in boreholes C3, C4, or C5. Borehole C4 revealed an 

apparent void from 58 to 62 ft. During drilling of borehole C4, the slurry mix entered the 

fractured CSL tubes at the O-cell location and began flowing out of the top of the CSL tubes 

at the shaft surface. Drilling could not be continued beyond this depth due to the loss of 

pressure. The apparent void was therefore likely cause by the fluid entering the O-cell and 

circulating to the surface. The loss of pressure caused the hole to collapse and drilling could 

not continue. Borehole C5 was drilled to a depth of 15 ft, below which the drilling rods were 

advanced with little resistance, even dropping in some regions, to a depth of 74 ft. No 

penetration tests were performed in borehole C5 above 74 ft due to the lack of penetration 

resistance, which is likely due to disturbance created by wash boring in the previous 4 

boreholes. Three samples taken below 74 ft. indicated dense fine sands. 

Results and Discussion 

Groutability 

Although some of the soils from the project site fell outside the range of parameters for 

which the groutability criteria in Akbulut & Saglamer (2002) were developed, the 
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groutability indices shown in Table 13 indicated that the soils in the vicinity of TS4 were less 

groutable than those at the production shafts. Although this is simply due to the lower 

achieved grouting pressure, the resulting groutability indices indicate that permeation 

grouting was unlikely and compaction grouting may have been occurring as intended. All of 

the production and test shafts were drilled with wet drill methods using bentonite slurry, and 

the soil samples were retrieved from the spoil piles during augering of the shafts. Therefore, 

the soil samples used in the groutability study may have contained fine particles from the 

drilling mud. This would increase the fines contents for the particle size distribution curves 

on which the groutability criteria depend, possibly altering conclusions regarding 

groutability. To examine this possibility, the results were verified by using particle size 

distribution curves for SPT samples taken during the drilling phase of LTP-1. These samples 

gave the same results as those obtained during construction of the production shafts, lending 

confidence to the other results. 

Ultrasound 

Preliminary field testing of the ultrasound probe indicated that the testing method would 

need to be modified for testing in fine sands. An important step in modeling the site 

conditions was to achieve full saturation of the fine sand in the laboratory. Full saturation of 

the sand would also improve the signal produced by the ultrasound probe as the transducers 

perform optimally in water, and air bubbles in partially saturated sands can cause a loss of 

wave energy due to scattering. The results of the laboratory tests indicate that the probe may 

require further development for use in fine sands. This investigation also demonstrated that 

the use of a wave blocker in conjunction with a water-filled, cased borehole may be a 

practical technique for using the ultrasonic probe in granular soils normally exhibiting 

borehole instability or collapse.  

Based on the laboratory results, PVC cased holes were selected for the ultrasound probe 

at TS4. The same type of 6 in PVC pipe was used in the field as in the laboratory. Ten foot 

sections of PVC piping were connected using PVC couplers fastened with PVC glue and 

screws. The first ultrasound probed bore hole, US1, was installed approximately 12 in. from 

the edge of the shaft and 3.75 ft. from the center of the shaft (at ground surface), as shown in 
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Figure 20. US1 was installed to coincide with the direction of the major principal-axis of 

bending strains measured during grouting, to the northeast of the shaft. Table 14 shows the  

Table 14. US1 Soil Profile 

Depth 

(ft) 
Comments 

0-67 Sand/sandy clay 

67-72 Stiff clay  

72-73 Grout 

73-74 Rock 

74-80 Sand 

 

soil profile encountered while drilling US1, which reveals a layer of grout approximately 12 

in. thick at an approximate depth of 72 ft, sandwiched between a layer of fat clay (67-72 ft) 

and what was later revealed through SEM imaging to be lignin, or partially formed coal from 

73 to 74 ft. 

The 6 in PVC pipe was installed immediately after drilling but could not be advanced 

beyond a depth of 37 ft due to collapse of the borehole. The ultrasound probe was tested the 

next day after flushing the casing with water. Borehole US1 was then probed to the depth of 

the PVC casing and the cone tip on the probe allowed the probe to be pushed into the sand 

about one to two feet before the wave blocker bracket was damaged. Figure 21 shows the 

image produced from the ultrasound probe of borehole US1.  

As seen in Figure 21, the probe produced reflections from the PVC casing but could not 

image the shaft through the fine sands. Therefore, the ultrasound imaging was then 

abandoned and the continuous sampling and SPT tests were used to continue the 

investigation. 
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Figure 21. Ultrasound image from bore hole US1 

Continuous SPT Data 

Performing continuous SPT tests on the soil immediately surrounding TS4 revealed a 

minimal presence of grout. A six inch grout layer was found on the North side of the shaft 

and a three inch grout layer was found on the East side of the shaft, both at approximate 

depths of 74-75 ft, coinciding with the shaft tip. No grout was found on the South or West 

sides of the shafts.  

Preceding the drilling of boreholes C4 and C5, there was extensive flooding of the 

Missouri River, within two miles of the project site, and water levels were still high during 

the drilling of these boreholes. High water levels in the area could mean a higher water table 

at the site. The change in pore water pressure associated with an increased water table may 

have disturbed the soil at borehole C5, although rotary mud drilling at the previous boreholes 

may have caused the lack of resistance starting at 15 ft and ending with the cavity around the 

O-cell depth. When drilling borehole C2 the drill bit and rod could have strayed from the 

course of vertical and moved toward the future location of borehole C5, possibly disturbing 

the soil and impacting the results of the drilling of borehole C5.  

Conclusions 

Post grouting can be used to verify the capacity of drilled shafts while post grouting for 

improved end bearing is sensitive to the soil conditions. Post grouting did not lead to any 

improvement in the end bearing capacity of the test shaft TS4, but production shafts on the 

Broadway Viaduct project exhibited an average 150% increase in end bearing capacity and 

36% increase in total capacity.  
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A groutability study indicated that the soil at TS4 may have been groutable if the design 

grouting pressure of 650 psi could be achieved, but the soil was likely not groutable at the 

actual achieved grouting pressure of 140 psi. The groutability study also indicated that 

permeation grouting was unlikely and compaction grouting was likely occurring at TS4. 

However, there was also a possible rupture of the grout tubes as indicated by measured 

bending strains, and forensic SPT sampling indicated a possible 2-12 in. thick grout 

migration towards the northeast of TS4. Despite the large grout take and inability to reach 

grouting pressure at TS4, the grouting pressures for the production shafts were much closer 

to the design pressures, giving some quality assurance in the form of verified mobilized 

resistances.  
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CHAPTER 5. PERFORMANCE OF POST GROUTED DRILLED SHAFTS: 

INFLUENCE OF CONSTRUCTION LOADS AND SERVICE LOADS ON POST 

GROUTED DRILLED SHAFTS 

 

A paper to be submitted for publication 

 

Anna Nadermann, Jeramy Ashlock, Brent Phares 

Introduction 

The 2010 replacement of the Broadway Viaduct (US 6) in Council Bluffs, Iowa presented 

an opportunity for the Iowa Department of Transportation (Iowa DOT) to utilize technologies 

which were either entirely new or fairly new to them. The Broadway Viaduct replacement 

was the first project in which the Iowa DOT implemented post grouting of drilled shafts and 

one of only a few Iowa DOT projects which utilized light weight foam concrete fill (LFCF) 

in the approaches.  

The proximity of the Broadway Viaduct to historic and residential buildings eliminated 

the use of driven piles due to the potential for negative effects of the vibration associated 

with driving piles. An alternative of post grouted drilled shafts was selected. Generally, the 

design capacity of drilled shafts is derived primarily from the side shear component and 

utilizes only a fraction of the available end bearing due to the large displacements required to 

fully mobilize the ultimate end bearing capacity. According to Mullins et al. (2006), pressure 

grouting (i.e. post grouting or base grouting) is a technique being used worldwide to regain a 

portion of this end bearing. Full scale load tests were performed at the Broadway Viaduct 

project to verify the estimated grouted shaft capacity while incorporating effects of local soil 

conditions and construction procedures.  

The bridge abutments on either end of the Broadway Viaduct rested on compressible 

soils, and overexcavation with light weight foamed concrete fill (LFCF) was used to prevent 

excessive settlement at the abutments. Light weight foam concrete fill material was used to 

achieve a zero net loading with a goal of eliminating settlement due to the fill. Minimization 

of settlements also decreased the construction time by eliminating pre-compaction of the base 
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soil at the abutment and also decreased cost by eliminating the need for soil improvement 

techniques.  

The relative newness of the post grouting and LFCF technologies to the Iowa DOT 

presented an opportunity to monitor the construction and performance of post grouting and 

LFCF. Both technologies were monitored during the construction of their respective bridge 

components as well as during subsequent bridge construction phases. The post grouted 

drilled shafts and the LFCF abutment were also equipped for long term monitoring. In 

addition to the construction and long term monitoring, the bridge is scheduled to undergo a 

live load test with monitoring of the drilled shaft as well as the LFCF and MSE retaining 

wall.  

Bridge Description 

The Broadway Viaduct is 1,537 ft long and is supported on 11 piers with a total of 53 

post-grouted drilled shafts. The Broadway Viaduct is a key artery and critical structure in 

Council Bluffs as the viaduct crosses the Indian Creek Conduit, several city streets, and the 

Burlington Northern/Illinois Central and Union Pacific railroads.  

Objectives  

The focus of this document will be the construction and long term monitoring of the post 

grouted drilled shafts. Specifically, the loads experienced by post grouted drilled shafts 

during bridge construction and during service will be determined and discussed. The 

measured loads during construction will also be compared to the theoretical loads expected. 

The evolution of the load transfer both seasonally and in the long term will be discussed. 

Also, the load transfer and load distribution during construction and in service will be 

compared to the minimum verified capacity of the drilled shafts determined from the post 

grouting parameters.  

Data Collection 

Following is the instrumentation plan and a description of the load test data, construction 

data, and service data. 

Instrumentation 

A long-term monitoring system was installed on the four shafts of Pier 10, consisting of a 

data logger and 48 vibrating wire sensors. The data logger was a Campbell Scientific model 
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CR1000 and the strain gages were Geokon Model 4911 Vibrating Wire Rebar Strain Meters 

(referred to as sister-bars). The bridge will be monitored for a minimum of one year, though 

at the time of publication about eight months of long term monitoring were complete. Each 

of the four shafts were fitted with three levels of sister-bar gages at the top, middle, and 

bottom of the shafts. Each level consisted of four sister-bar gages tied to the longitudinal 

steel reinforcing bars and spaced equidistant around the diameter of the shaft. The 

instrumentation plan for the Pier 10 drilled shafts is shown in Figure 22.  

 

Figure 22. Pier 10 drilled shaft instrumentation plan  

Figure 23 is a diagram of the gage locations for Shaft 1, the gages of Shafts 2-4 are placed in 

a similar manner. Following is a list of gages which were malfunctioning due to either the 

cable connecting the gage to the data logger being damaged or the gage itself being damaged: 

 SH1-M-GN 

 SH2-M-GN 

 SH2-M-GS 

 SH4-B-GN 

 SH4-M-GN 

SH1 SH2 SH3 SH4 
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Construction Data 

The Broadway Viaduct was constructed in two phases. Phase I consisted of construction of 

the South half of the structure; the eastbound lanes and their supporting structure. Phase II 

consisted of the North half of the structure; the westbound lanes and their supporting 

structure. The construction data presented herein pertains almost entirely to the first stage of 

construction starting when Shafts 1 & 2 were constructed, through the construction of the 

Phase I bridge deck, as well as two construction readings taken during Phase II construction. 

All data recorded during construction was obtained by hand using a Geokon GK404 Readout 

Box.  

 

Figure 23. Plan view of instrumentation in Shaft 1 

Shafts 1 and 2 were constructed on June 8 and 9, 2010, respectively. Although readings 

of the sister-bars were taken during construction of Shafts 1 and 2, the decision was made to 

disregard these readings because the concrete in the shafts was just placed and still wet. The 

next reading was taken on July 9, 2010 just before the column concrete was placed. At this 

time the shaft concrete had reached the 28 day strength and would therefore begin to act 

integrally with the rebar strainmeters. This reading, referred to as the Shaft concrete cured 
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reading, was therefore considered to be the first meaningful reference point for readings from 

the rebar strainmeters. Table 15 lists the dates of the readings along with the corresponding 

milestones in the construction of Pier 10. 

Table 15. Construction Data Readings 

Date Milestone 

July 9, 2010 Phase I – Shaft concrete cured (no load) 

July, 21, 2010 Phase I – Column load 

September 7, 2010 Phase I – Pier cap load  

November 22, 2010 Phase I – Diaphragm and bridge deck load 

February 22, 2011 Phase II – Miscellaneous formwork/construction equipment load (1) 

April 11, 2011 Phase II – Miscellaneous formwork/construction equipment load (2) 

 

Service Data 

The service data, which includes Shafts 1-4, is referred to as the data collected after 

installing the CR 1000 data logger on August 17, 2011. The data logger registered a reading 

from each sensor every hour. The data logger was powered by a 12-volt battery charged by a 

solar panel mounted on the side of the bridge abutment. A faulty battery-solar panel system 

resulted in the data logger occasionally failing to take readings due to lack of power. The 

data at these times was filtered out which explains the gaps in data for the month of October 

2011 and the beginning of December 2011.  

Results and Discussion 

Following is a discussion of the recorded data in terms of temperature, load-related 

strains, and load-related force. Observed bending and load-shedding behavior of the Pier 10 

shafts are also discussed, and measured loads are compared to estimates of the construction 

loads. 

Temperature 

The temperature in the top level of gages is compared to the ambient temperature in Figure 

24. The two sources of ambient temperature used for the comparison in Figure 24 are the 

Omaha, Nebraska Airport weather station (Weather Underground 2012) and the data logger 

installed at the bridge abutment. The Omaha, Nebraska Airport ambient temperature closely 

matches the data logger ambient temperature. The top gages of the Pier 10 Shafts generally 

follow the overall trend of the ambient temperature, although with a time-lag and little daily 
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variation. The lag in the top gages can be attributed to the insulation provided by the ground 

cover. 

 

Figure 24. Comparison of ambient temperature to top of shaft temperature 

The variation over time in the average temperature at each level of gages in Shaft 1 can 

be seen in Figure 25. The top level of gages follows a seasonal trend while the middle and 

bottom levels of gages remains constant at around 58°F. All four shafts follow similar trends 

for temperature although it should be noted that in summer months, Shaft 1 was consistently 

approximately 5°F warmer than the other shafts. The higher temperatures in Shaft 1 can 

likely be attributed to the southern sun exposure of Shaft 1, whereas the other shafts are 

shaded by the bridge deck.  

Load Strain and Load Force  

The axial load strain (note that here load strain refers to the strain caused by external 

loads, obtained by correcting for the concrete partially restraining the steel due to concrete’s 

lower coefficient of thermal expansion) time history for the top, middle, and bottom level of 

gages of Shaft 1is shown in Figure 26. The axial load strain at each level was determined by 

averaging the functioning strain gages at each level. The load strain time histories for Shafts  

N 

N 

N 

N 
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Figure 25. Variation in average temperature of bottom, middle, and top of Shaft 1 

2-4 were similar to that of Shaft 1 and are therefore not shown in the interest of brevity. 

Figure 26 indicates that the top and middle level of gages were in compression while the 

bottom level of gages moved towards tension relative to the load measured on the reference 

data. The reduction in load, relative to the initial reading, in the bottom level of gages may be 

due to the grout bulb shrinking away from the base of the shaft and the soil’s 

relaxation/consolidation.  The axial strain in the top level of gages indicates a reduction in 

compressive load over time while the middle and bottom experience an increase in 

compression. Although the maximum axial load strain would be expected in the top level of 

gages, as the strain should dissipate with depth, Figure 26 reveals that the maximum axial 

load strain occurs in the middle level of gages. The top level of gages is at a distance of about 

two feet from the top of the drilled shaft where the overlap of reinforcing from the column 

steel is located. This larger steel area ratio increases the axial stiffness and therefore 

decreases the axial deformation near the top level of gages, compared to the middle and 

bottom sections of the drilled shaft.  

The axial load force is a function of the axial load strain as indicated in Eq. 5.1. The axial 

force time history for the top, middle, and bottom level of gages of Shaft 1 is shown in Figure  
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Figure 26. Time history of Shaft 1 load strain 

27. The force in Shafts 2-4 are similar to that of Shaft 1 and are therefore not shown. As 

expected, the direction of load force and the change in load force with time is the same at 

each level as with load strain. However, the maximum load force does not follow the trend of 

the maximum load strain. The maximum load strain consistently occurred at the middle of 

the shafts, whereas the maximum load force alternately occurred in the top or middle of the 

shafts at different times. The differences in the relative trends for the top and middle of the 

shafts in Figures 26 and 27 can be attributed to the higher steel ratio and axial stiffness at the 

top, where the incremental axial force is calculates as  

 ΔP = Δε(EsAs + EcAc) 5.1 

where Δε = measured incremetal strain, 

 A = the cross sectional area, and 

 E = Young’s modulus 
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Figure 27. Time history of Shaft 1 load 

Bending Strains 

Although the change in magnitude of the load strain from August 2011 to December 

2011 is similar for the top level East and West gages of Pier 10 drilled shafts, the direction of 

the changes are different. The top level East gages tend towards tension (see Figure 28), 

while the top level West gages trend more toward compression (see Figure 29). Figure 30 is a 

direct comparison of the load strain in top level East and West gages of Shaft 1. Similar plots 

for Shaft 2-4 reveal similar trends. The difference in load strain across the shaft indicates 

Shaft 1 is experiencing bending in the East-West (longitudinal) direction. The difference 

between the East and West load strains appear to follow a seasonal trend, as well as a daily 

trend similar to the temperature, implying that the bending in the top level gages is likely due 

to the thermal straining of the deck and girders supported by Pier 10, which is a fixed pier. 

The loads due to the thermal expansion and contraction of the superstructure are apparently 

transferred to the top of the drilled shafts through the columns.  

Figures 31 and 32 are direct comparisons of the load strain in the East and West gages of 

Shaft 1 at the middle and bottom levels, respectively. Similar plots for Shafts 2-4 reveal 
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similar findings with slightly varying magnitudes of differential strains at each level. The 

difference in magnitude of load strain from the East to West side indicates Shaft 1 is in 

 

Figure 28. Time history of load strain in the East gages at the top of the shafts 

 

Figure 29. Time history of load strain in the West gages at the top of the shafts 
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Figure 30. Load strain at the top of Shaft 1 for East and West gages, indicating bending 

about the North-South axis 

bending at the middle and bottom levels as well, although likely not due to thermal straining 

of the deck and girders as for the top of the shaft as the difference in load strain across the 

diameter of the shaft is constant with time. The magnitude of bending, indicated by the 

difference in magnitude of load strain across the shaft, remains fairly constant at the middle 

and bottom levels of gages. The magnitude of bending is larger at the bottom of the shaft 

than at the middle, possible due to the grout not spreading evenly across the bottom of the 

shaft. The bending induced by thermal expansion and contraction of the superstructure 

experienced at the top level of gages in Shaft 1 dissipates before reaching the middle and 

bottom level of gages. 

Figures 33 and 34 show that the load strain in the North and South top level gages appear 

to follow a slight seasonal trend. Directly comparing the load strain in the North and South 

gages at the top of Shaft 1 indicates that the magnitude of bending in the transverse direction 

of the bridge is much small than the longitudinal direction, due to the greater stiffness of the 

pier in the transverse direction. 
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Figure 31. Load strain in the middle of Shaft 1 for East and West gages, indicating 

bending about the North-South axis 

 

 

Figure 32. Load strain in the bottom of Shaft 1 for East and West gages, indicating 

bending about the North-South axis 
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Figure 33. Time history of load strain in the North gages of the top of the shafts 

 

 

Figure 34. Time history of load strain in the South gages of the top of the shafts 
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Load Transfer 

The axial load at each level of gages was calculated using the average of the working 

gages at the respective level at various points in time for Shafts 1 and 2. The variation of 

axial load with depth in Shaft 1 is shown in Figure 35 at each construction milestone and two 

points in time under the service loading. The load varies similarly with depth for Shaft 2. 

Figure 35 shows Shaft 1 to be mostly in compression throughout the Phase I construction of 

Pier 10. The Phase I – Column load reading (July 21, 2010) indicates that Shaft 1 was in 

tension when the columns were completed, this is likely due to the selected value of the 

coefficient of thermal expansion used for the concrete, as the load strain (and  

 

Figure 35. Force with depth for Shaft 1 during construction and service 

therefore the load) is highly sensitive to the selection of the coefficient of thermal expansion. 

The negative force readings at the bottom of the shaft may indicate that the grot bulb is 

shrinking or the soil relaxing relative to the reference date fo July 9, 2010 (see Table 15). 

Shaft 1 was poured on June 8, 2010 and post-grouted on June 16, 23 day prior to the 

reference date. The axial load dissipates with depth as expected at all points in time except at 

the Cage Setting of Shafts 3 and 4 (February 22, 2011) and the Abutment LFCF pour (April 

11, 2011) where the axial load increases from the top to middle level and decreases from the 

middle to bottom level. At the time of the Cage Setting of Shafts 3 and 4 the respective 
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excavations were open which may have impacted the loads seen by Shafts 1 and 2. At the 

time of the Abutment LFCF pour, the Phase II pier cap had been completed but the 

diaphragm, girders, and bridge deck had not yet been constructed. However, the Phase II pier 

cap was joined to the Phase I pier cap, and therefore would have influenced the loads on 

Shafts 1 and 2.  

In addition to increasing the axial capacity of drilled shafts, post grouting can be used to 

verify the lower bound end bearing and side shear capacities of drilled shafts using the 

achieved grouting pressure and for the specified upward displacement. The shaft tip area of 

19.64 ft
2
 was multiplied by the maximum achieved grouting pressure to calculate the verified 

end bearing capacity. The difference of the resulting force at the tip and the shaft buoyant 

weight was divided by the shaft perimeter area to obtain the verified side shear capacity. 

Table 16 compares Pier 10 drilled shaft capacities calculated using this procedure to the 

maximum axial load experienced by the shafts. The Pier 10 drilled shafts have the same 

Table 16. Comparison of Axial Service/Construction Load to Verified Drilled Shaft 

Capacity 

Pier 10 

Shaft 

Maximum 

Achieved 

Grouting 

Pressure 

 (psi) 

Verified Capacity 
Maximum 

Axial Service 

Load 

 (kip) 

Side Shear 

(kip) 

End 

Bearing 

(kip) 

Total  

(kip) 

Shaft 1 653 1706 1846 3552 510 

Shaft 2* - - - - 606 

Shaft 3 420 1047 1188 2235 823 

Shaft 4 460 1160 1301 2461 1002 

*Grouting record not available 

 

dimensions and therefore the verified side shear, end bearing, and total capacities are directly 

proportional to the maximum achieved grouting pressure. The maximum axial service load 

increase from 510 kips at Shaft 1 to 1002 kips at Shaft 4; this is likely due to the pedestrian 

walkway located on the North side (Shaft 4 side) of the bridge deck which tends to create a 

larger compressive force on the North side of the bridge than the South side of the bridge. 

Because Shaft 1 achieved the highest maximum grouting pressure and supports the smallest 

axial service load, it has the largest factor of safety of nearly seven on axial service load in 
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the reported time period. Conversely, Shaft 4 has the smallest factor of safety of about 2.5 on 

axial service load in the reported time period. 

Construction Loads 

As a means of comparing the loads for which a bridge foundation is designed to those 

actually imposed during construction, the monitoring system was treated as a scale to 

measure the axial load in the top of Shafts 1 and 2. A comparison of the Shaft 1 and Shaft 2 

measured theoretical load during construction can be seen in Figures 36 and 37. The first step 

in determining the theoretical loads on the Pier 10 foundation system was to calculate the 

weight of each component of the bridge that was supported by Pier 10 during the first stage 

of construction.  

The weight of each component was determined by multiplying the volume of the 

component by the weight of reinforced concrete, assumed to be 150 pounds per cubic foot. 

At the time of the Phase I Column load reading, the only load on the shafts was that of their 

respective columns. Each column was centered on a drilled shaft, therefore the theoretical 

load on each shaft was taken as the weight of the respective column. At the time of the Phase 

I Pier cap loading reading, the columns were connected by the pier cap, but the system was 

not symmetric. Therefore, the load on each shaft was determined by summing moments 

about the base of each column. The Phase I Diaphragm and bridge deck load reading was 

taken after the diaphragm was poured, the girders were placed, and the bridge deck was 

poured. The weight of the diaphragm was considered a uniformly distributed load applied 

directly to the pier cap. The weight of the bridge deck was first distributed to the girders and 

weight of the bridge deck and the self-weight of the girders were considered to be supported 

equally by Pier 10 and either Pier 9 or Pier 11 for the West or East span, respectively. Similar 

to the column-pier cap system, the column-pier cap-diaphragm-girder-bridge deck system 

was not symmetrical, therefore the load on each shaft was calculated using the summation of 

moments about the base of each column. It should be noted that the following components 

were not considered in determining the theoretical loads due to the lack of information about 

the loads; 

 Steel and wood form-work and partial diaphragm reinforcing at the time of the Phase 

I Pier cap load reading, 
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Figure 36. Comparison of Shaft 1 measured and theoretical load  

 

 

Figure 37. Comparison of Shaft 2 measured and theoretical load  
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 scaffolding attached to the South side of the Phase I bridge deck at the time of the 

Phase I Diaphragm and bridge deck load reading,  

 metal light posts installed along the South side of the Phase I bridge deck at the time 

of the Phase I Diaphragm and bridge deck load reading, and 

 minimal construction equipment and materials supported by the Phase I bridge deck 

at the time of the Phase I Diaphragm and bridge deck load reading. 

The difference between measured and theoretical forces for Shafts 1 and 2 are listed in 

Table 17. The apparent tension in the measured axial force at the time of the column loads is 

likely due to the selection of the coefficient of thermal expansion as discussed previously, 

this may also in part explain the difference in the measured and theoretical load at all 

readings. The underestimate of approximately 85.1 kips and 71.7 kips in the loads in 

Table 17. Difference in Measured and Theoretical Construction Loads 

Date Milestone 

Measured – Theoretical 

(kip) 

Shaft 1 Shaft 2 

July 9, 2010 
Phase I – Shaft concrete cured (no 

load) 
0 0 

July, 21, 2010 Phase I – Column load -65.0 -63.4 

September 7, 2010 Phase I – Pier cap load  85.1 71.7 

November 22, 2010 
Phase I – Diaphragm and bridge deck 

load 
-107.0 -217.6 

 

Shafts 1 and 2, respectively, at the time of the column construction reading can also be 

partially explained by the exclusion of the weight of steel and wood form work and a portion 

of the diaphragm reinforcing in the theoretical load due to a lack of information about the 

weights. The difference in the measured and theoretical load was similar for Shafts 1 and 2 at 

the time of the column construction and pier-cap construction readings, although this was not 

the case for the Phase I Diaphragm and bridge deck load reading. On the final comparison of 

the measured and theoretical load, the difference in Shaft 2 is more than twice the difference 

in Shaft 1. This difference can be partially attributed to the steel light posts installed along 

the South side of the Phase I bridge deck (the Shaft 1 side). The added weight on the South 

side of the Phase I bridge deck would be resisted by differential loads in the foundation 

system. The overturning moment due to the added weight of the steel light masts would 
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result in a compressive load in Shaft 1 and a tensile load in Shaft 2. Adding the overturning 

moment due to the added weight of the steel light masts to the rest of the weight supported by 

Shafts 1 and 2 would effectively result in a smaller compressive load in Shaft 2 as compared 

to Shaft 1. Other factors which contributed to the difference in measured and theoretical load 

include the estimation of the weight of concrete and the absence of an as-built plan set to 

estimate the volume of each bridge component.  

The maximum construction axial load applied to the top of Shafts 1 and 2 was 454 kips 

and 230 kips, respectively, for both Phase I Diaphragm and bridge deck load readings 

measurements. The larger compressive force on Shaft 1 can be attributed to the steel light 

masts on the South side (Shaft 1 side) of the bridge. The maximum construction axial loads 

were 89% and 38% of the measured maximum service axial loads for Shafts 1 and 2, 

respectively.  

Conclusions and Recommendations 

Conclusions 

As expected, the axial strain and axial load at the top of the shafts followed a seasonal 

trend while dissipating with depth. The seasonal trend of the axial strain and force can be 

attributed to the thermal expansion and contraction of the superstructure relative to the Pier 

10 drilled shafts. The axial strain and force indicate that thes tip of post grouted drilled shafts 

may experience a reduction in compressive force, due to the grout bulb shrinking away from 

the tip of the drilled shaft.  

Similar to the axial strain and force, bending about the centerline of Pier 10 (longitudinal 

bending), at the top of the shafts follows a seasonal trend as the top of the shaft is pushed and 

pulled by the thermal expansion and contraction of the superstructure. The bending in the 

Pier 10 drilled shafts dissipates with depth and there is minimal bending in the transverse 

direction. The base of some of the drilled shafts experienced small amounts of bending at the 

tip which is likely due to an uneven grout bulb forming at the tip of the drilled shaft.  

The dissipation of load with depth did not appear to be influenced greatly by the post 

grouting with the exception of the tip of the drilled shaft being in tension. The rate at which 

the load dissipated with depth seemed only to be affected by the stiffness of the drilled shaft 

and the construction sequence.  
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Recommendations 

Based on the conclusions drawn from the data presented herein, the following 

recommendations for current practice and future studies should be considered when 

designing and constructing post grouted drilled shafts: 

 Long-term performance monitoring should be considered for post grouted drilled 

shafts with a goal of further understanding the bending forces and load transfer with 

time at the tip of post-grouted drilled shafts.  

 For improved understanding of these types of forces, pressure transducers should be 

installed in conjunction with the post grouting apparatus to monitor the distribution of 

grout pressure at the tip and a sufficient number of gage levels should be used to 

determine the extent of the tensile reading axial forces. 

 To gain a better understanding of the true magnitude of tip forces, shaft strains should 

be measured prior to and during post-grouting. Strains measured just before grouting 

should then be taken as the reference condition. As post-grouting on this project was 

performed within 8 to 10 days of pouring the shaft concrete, the validity of the 

vibrating wire sister bar strain gage measurements at such early stages of concrete 

curing should be studied. 
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CHAPTER 6. CONCLUSIONS & RECOMMENDATIONS 

This chapter presents an overview of the technical merit and/or scientific value gained 

from these studies and recommendations based on these conclusions. The conclusions and 

recommendations are grouped into two categories; (1) those associated with integral 

abutment bridges and (2) those associated with post grouted drilled shafts.  

APPROACH SLABS INTEGRAL WITH INTEGRAL ABUTMENT BRIDGES 

The conclusions and recommendations in this section are drawn directly from the 

research presented in Chapter 3, based on the instrumentation and year-long monitoring of 

two integral abutment (I-A) bridges with precast approach slabs:  

 The integral connection between the approach slabs and the bridge appear to function 

well with no observed distress and little relative longitudinal movement.  

 The measured strains in the approach slabs indicate that a significant force exists at 

the expansion joint. This force approached a range of approximately 200 kips/ft. 

 Notable frictional forces exist at the bottom of the approach slab.  

 The minor visible distress could not be attributed to the fact that the approach slab is 

integrally connected to the bridge.  

The following recommendations for current practice and future studies, which are based 

on the study of approach slabs tied to integral abutment bridges, should be considered when 

designing and constructing I-A bridges:  

 Prevention of the “bump at the end of the bridge” should be considered a design goal 

for approach slabs. 

 The force which develops at the expansion joint should be taken into consideration 

when designing both the approach slab and the bridge. A more robust abutment may 

transfer less of the expansion/contraction force to the approach slab and more to the 

abutment foundation, resulting in less force at the expansion joint. A second 

alternative would be to reduce or even eliminate the interaction of the abutment and 

soil with the use of a mechanically stabilized earth wall placed between the abutment 

and earth fill.  
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 The frictional interaction with the supporting soil should be taken into consideration 

during the design process.  

 As good engineering practice dictates, these recommendations should undergo a 

comprehensive testing program and be validated with further studies. Future studies 

should also ensure that approach slabs are instrumented throughout their entire width 

in order to determine if a gradient exists in the forces across the slab. 

POST GROUTED DRILLED SHAFTS 

The conclusions and recommendations in this section are drawn directly from the 

research presented in Chapters 4 and 5. The following conclusions were drawn from the test 

shaft program and long-term monitoring of production post-grouted drilled shafts: 

 Post grouting of drilled shafts can be used to verify a minimum capacity of drilled 

shafts as limited by the uplift criteria for post grouting. 

 Improvement of drilled shaft end bearing resistance by post-grouting, is sensitive to 

the soil conditions. Soil with high fines content can be difficult to grout and the 

presence of a gravel seam near the tip of a drilled shaft can create an alternate path for 

the grout, rather than forming a bulb at the base of the shaft. 

 Post grouting of the production shafts correlated to an average increase of 150 % in 

end bearing capacity and an average increase of 36% in total capacity.  

 The groutability of soil is dependent on the achievement of a minimum grouting 

pressure. The test shaft did not achieve a sufficient grouting pressure to experience 

improved capacity. Although not all production shafts reached their design grouting 

pressure, they did achieve sufficient grouting pressure to improve their end bearing 

capacity.  

 Long-term monitoring of the post-grouted drilled shafts revealed a reduction in end-

bearing experienced at the base of the shafts. These reductions in end-bearing may be 

due to the grout bulb shrinking away from the tip of the shaft.  

 The bending strains at the tip of the drilled shafts were not present in all shafts and 

were small in comparison to the bending strains and forces at the top of the shafts; 
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therefore the bending strains at the tip of the post-grouted drilled shafts may be due to 

an uneven grout bulb forming at the tip of the drilled shaft.  

The following recommendations for current practice and future studies should be 

considered when designing and constructing post-grouted drilled shafts: 

 Due to the uncertainty with subsurface work, the decision to utilize post grouting to 

increase drilled shaft capacity should be approached with caution and should be 

accompanied by a test shaft program. It is also recommended that a groutability study 

be completed on the soil in which a post-grouted drilled shaft will be tipped. 

 Long-term performance monitoring should be considered for post-grouted drilled 

shafts with a goal of further understanding the bending strains and end-bearing at the 

tip. To achieve further understanding of these types of forces, pressure plates should 

be installed in conjunction with the post grouting apparatus to monitor the distribution 

of grout pressure and end-bearing stresses at the tip and a sufficient number of gage 

levels should be used to determine the distribution of axial forces. 

 As good engineering practice dictates, these recommendations should undergo a 

comprehensive testing program and be validated with further studies. 

SUMMARY OF CONCLUSIONS 

The goals of this research, as stated in the introduction, were:  

  Mediate the bump at the end of the bridge. 

 Validate the use of post grouting to increase drilled shaft capacity. 

Although this research did not fully mediate the bump at the end of the bridge, the findings of 

this research did reveal forces in the approach slabs of I-A bridges with connected approach 

slabs which should be considered in future design and construction of these bridges. 

Consideration of these forces in the design and construction of precast approach slabs which 

are integrally connected to integral abutment bridges could potentially lead to reduced 

maintenance costs associated with the bump at the end of the bridge. This research did 

validate that post grouting can be used to increase drilled shaft capacity, though the technique 

should be approached with caution and engineering judgment should be exercised. Increasing 

the end bearing resistance of drilled shafts through the use of post grouting can effectively 
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allow drilled shafts to be shortened without losing capacity or exceeding service 

displacement criteria, potentially leading to reduced costs for drilled shafts.
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